
Even More Number
Theory

CSE 311 Spring 2022

Lecture 13

Logical Ordering

When doing a proof, we often work from both sides…

But we have to be careful!

When you read from top to bottom, every step has to follow only from
what’s before it, not after it.

Suppose our target is 𝑞 and I know 𝑞 → 𝑝 and 𝑟 → 𝑞.

What can I put as a “new target?”

Logical Ordering

So why have all our prior steps been ok backward?

They’ve all been either:

A definition (which is always an “if and only if”)

An algebra step that is an “if and only if”

Even if your steps are “if and only if” you still have to put everything in
order – start from your assumptions, and only assert something once it
can be shown.

A bad proof

Claim: if x is positive then 𝑥 + 5 = −𝑥 − 5.

𝑥 + 5 = −𝑥 − 5

𝑥 + 5 = −𝑥 − 5

|𝑥 + 5| = | − (𝑥 + 5)|

𝑥 + 5 = |𝑥 + 5|

0 = 0

This claim is false – if you’re trying to do algebra, you need to start with
an equation you know (say 𝑥 = 𝑥 or 2 = 2 or 0 = 0) and expand to the
equation you want.

Primes and FTA

An integer 𝑝 > 1 is prime iff its only positive divisors are 𝟏
and 𝒑. Otherwise it is “composite”

Prime

Every positive integer greater than 1 has a unique

prime factorization.

Fundamental Theorem of Arithmetic

GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the

largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the

smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple

Try a few values…

gcd(100,125)

gcd(17,49)

gcd(17,34)

gcd(13,0)

lcm(7,11)

lcm(6,10)

The Greatest Common Divisor of 𝑎 and 𝒃
(gcd(a,b)) is the largest integer 𝒄 such that 𝒄|𝒂

and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃
(lcm(a,b)) is the smallest positive integer 𝒄 such

that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple

How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 ⋅ 3, 22 ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.

(lcm has a similar algorithm – take the maximum number of copies of
everything)

But that’s….really expensive. Mystery finds gcd.

public int Mystery(int m, int n){

if(m<n){

int temp = m;

m=n;

n=temp;

}

while(n != 0) {

int rem = m % n;

m=n;

n=temp;

}

return m;

}

GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

Why is this true? The proof isn’t easy, we’ll do it next week.

Why should you care?

So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

What number can we pick?

The next two slides are going to get more abstract…we’re listing out the
facts we need to solve that equation.

Remember everything we’re

learning contributes to us

eventually understanding RSA.

This is a key step in generating keys.

Bézout’s Theorem

We’re not going to prove this theorem…

But we’ll show you in section how to find 𝑠,𝑡 for any positive integers
𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem

So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1

Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .

So the 𝑠 from Bézout’s Theorem is what we should multiply by!

Ok…how am I supposed to find 𝑠, 𝑡?

It turns out that while you’re calculating the gcd (using the Mystery
algorithm), you can keep some extra information recorded, and end up
with the 𝑠, 𝑡

This is called the “extended Euclidian algorithm”

You’ll walk through it in section on Thursday.

Facts about modular arithmetic

For all integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 where 𝑛 > 0:

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑 𝑚𝑜𝑑 𝑛 then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛).

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

𝑎%𝑛 = 𝑎 − 𝑛 %𝑛.

We didn’t prove the first, it’s a good exercise! You can use it as a fact as
though we had proven it in class.

Proving the key fact about gcds

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus
𝑥 ≤ 𝑦.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥.

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .

Extra Practice!

Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)

% and Mod

Other resources use 𝑚𝑜𝑑 to mean an operation (takes in an integer,
outputs an integer). We will not in this course. 𝑚𝑜𝑑 only describes ≡. It’s
not “just on the right hand side”

Define 𝑎%𝑏 to be “the 𝑟 you get from the division theorem”
i.e. the integer 𝑟 such that 0 ≤ 𝑟 < 𝑑 and 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞.

This is the “mod function”

I claim 𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

How do we show and if-and-only-if?

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑛|𝑏 − 𝑎 so 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. (by definitions of mod and
divides).

So 𝑎 = 𝑏 − 𝑛𝑘

Taking each side %𝑛 we get:

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

Where the last equality follows from 𝑘 being an integer and doing 𝑘
applications of the identity we proved in the warm-up.

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Show the forward direction:

If 𝑎%𝑛 = 𝑏%𝑛 then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

This proof is a bit different than the other direction.

Remember to work from top and bottom!!

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Forward direction:

Suppose 𝑎%𝑛 = 𝑏%𝑛.

By definition of %,𝑎 = 𝑘𝑛 + (𝑎%𝑛) and 𝑏 = 𝑗𝑛 + 𝑏%𝑛 for integers 𝑘, 𝑗

Isolating 𝑎%𝑛 we have 𝑎%𝑛 = 𝑎 − 𝑘𝑛. Since 𝑎%𝑛 = 𝑏%𝑛, we can plug
into the second equation to get: 𝑏 = 𝑗𝑛 + (𝑎 − 𝑘𝑛)

Rearranging, we have 𝑏 − 𝑎 = 𝑗 − 𝑘 𝑛. Since 𝑘, 𝑗 are integers we have
𝑛|(𝑏 − 𝑎).

By definition of mod we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

Euclidian Algorithm

Euclid’s Algorithm

gcd(660,126)

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}

Euclid’s Algorithm

gcd(660,126)

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}

= gcd(126, 660 mod 126) = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Tableau form

660 = 5 ⋅ 126 + 30
126 = 4 ⋅ 30 + 6
30 = 5 ⋅ 6 + 0

Starting Numbers

Final

answer

Bézout’s Theorem

We’re not going to prove this theorem…

But we’ll show you how to find 𝑠,𝑡 for any positive integers 𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)

= gcd(8, 27%8) = gcd(8, 3)

= gcd(3, 8%3) = gcd(3, 2)

= gcd(2, 3%2) = gcd(2,1)

= gcd(1, 2%1) = gcd(1,0)

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 2 ⋅ 3

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 3 ⋅ 3
= −1 ⋅ 8 + 3 27 − 3 ⋅ 8
= 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)
= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting

back, you keep

the larger of 𝑚, 𝑛
and the number

you just

substituted.

Don’t simplify

further! (or you

lose the form you

need)

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7(mod 26)

Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5) = gcd(5,2)

= gcd(2, 5%2) = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ; 2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ; 1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)
= 3 ⋅ 5 − 2 ⋅ 7

= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7
3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse.

We’ll write it as 15, since we’re working mod 26.

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7 (𝑚𝑜𝑑 26).

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)

𝑦 ≡ 45(𝑚𝑜𝑑 26)

Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)

So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ

So {… ,−7,19,45,…19 + 26𝑘,… }

