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Logical Ordering

When doing a proof, we often work from both sides…

But we have to be careful!

When you read from top to bottom, every step has to follow only from 
what’s before it, not after it.

Suppose our target is 𝑞 and I know 𝑞 → 𝑝 and 𝑟 → 𝑞.

What can I put as a “new target?”



Logical Ordering

So why have all our prior steps been ok backward?

They’ve all been either:

A definition (which is always an “if and only if”)

An algebra step that is an “if and only if”

Even if your steps are “if and only if” you still have to put everything in 
order – start from your assumptions, and only assert something once it 
can be shown. 



A bad proof

Claim: if x is positive then 𝑥 + 5 = −𝑥 − 5.

𝑥 + 5 = −𝑥 − 5

𝑥 + 5 = −𝑥 − 5

|𝑥 + 5| = | − (𝑥 + 5)|

𝑥 + 5 = |𝑥 + 5|

0 = 0

This claim is false – if you’re trying to do algebra, you need to start with 
an equation you know (say 𝑥 = 𝑥 or 2 = 2 or 0 = 0) and expand to the 
equation you want.



Primes and FTA

An integer 𝑝 > 1 is prime iff its only positive divisors are 𝟏
and 𝒑. Otherwise it is “composite”

Prime

Every positive integer greater than 1 has a unique 

prime factorization.

Fundamental Theorem of Arithmetic



GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the 

largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the 

smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple



Try a few values…

gcd(100,125)

gcd(17,49)

gcd(17,34)

gcd(13,0)

lcm(7,11)

lcm(6,10)

The Greatest Common Divisor of 𝑎 and 𝒃
(gcd(a,b)) is the largest integer 𝒄 such that 𝒄|𝒂

and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃
(lcm(a,b)) is the smallest positive integer 𝒄 such 

that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple



How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 ⋅ 3, 22 ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.

(lcm has a similar algorithm – take the maximum number of copies of 
everything)

But that’s….really expensive. Mystery finds gcd.



public int Mystery(int m, int n){

if(m<n){

int temp = m;

m=n;

n=temp;

}

while(n != 0) {

int rem = m % n;

m=n;

n=temp;

}

return m;

} 



GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

Why is this true? The proof isn’t easy, we’ll do it next week.

Why should you care?



So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by 
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

What number can we pick?

The next two slides are going to get more abstract…we’re listing out the 
facts we need to solve that equation.

Remember everything we’re 

learning contributes to us 

eventually understanding RSA.

This is a key step in generating keys.



Bézout’s Theorem

We’re not going to prove this theorem…

But we’ll show you in section how to find 𝑠,𝑡 for any positive integers 
𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that 

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem



So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by 
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1

Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .

So the 𝑠 from Bézout’s Theorem is what we should multiply by!



Ok…how am I supposed to find 𝑠, 𝑡?

It turns out that while you’re calculating the gcd (using the Mystery 
algorithm), you can keep some extra information recorded, and end up 
with the 𝑠, 𝑡

This is called the “extended Euclidian algorithm”

You’ll walk through it in section on Thursday.



Facts about modular arithmetic

For all integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 where 𝑛 > 0:

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑 𝑚𝑜𝑑 𝑛 then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛).

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

𝑎%𝑛 = 𝑎 − 𝑛 %𝑛.

We didn’t prove the first, it’s a good exercise! You can use it as a fact as 
though we had proven it in class.



Proving the key fact about gcds



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and 
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a 
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and 
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus 
𝑥 ≤ 𝑦.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. 

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .



Extra Practice!



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that 
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division 
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)



% and Mod

Other resources use 𝑚𝑜𝑑 to mean an operation (takes in an integer, 
outputs an integer). We will not in this course. 𝑚𝑜𝑑 only describes ≡. It’s 
not “just on the right hand side” 

Define 𝑎%𝑏 to be “the 𝑟 you get from the division theorem”
i.e. the integer 𝑟 such that 0 ≤ 𝑟 < 𝑑 and 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞.

This is the “mod function”

I claim 𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

How do we show and if-and-only-if?



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑛|𝑏 − 𝑎 so 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. (by definitions of mod and 
divides).

So 𝑎 = 𝑏 − 𝑛𝑘

Taking each side %𝑛 we get:

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

Where the last equality follows from 𝑘 being an integer and doing 𝑘
applications of the identity we proved in the warm-up.



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Show the forward direction:

If 𝑎%𝑛 = 𝑏%𝑛 then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

This proof is a bit different than the other direction.

Remember to work from top and bottom!!

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Forward direction:

Suppose 𝑎%𝑛 = 𝑏%𝑛.

By definition of %,𝑎 = 𝑘𝑛 + (𝑎%𝑛) and 𝑏 = 𝑗𝑛 + 𝑏%𝑛 for integers 𝑘, 𝑗

Isolating 𝑎%𝑛 we have 𝑎%𝑛 = 𝑎 − 𝑘𝑛. Since 𝑎%𝑛 = 𝑏%𝑛, we can plug 
into the second equation to get: 𝑏 = 𝑗𝑛 + (𝑎 − 𝑘𝑛)

Rearranging, we have 𝑏 − 𝑎 = 𝑗 − 𝑘 𝑛. Since 𝑘, 𝑗 are integers we have 
𝑛|(𝑏 − 𝑎).

By definition of mod we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).



Euclidian Algorithm



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}

= gcd(126, 660 mod 126)   = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Tableau form

660 = 5 ⋅ 126 + 30
126 = 4 ⋅ 30 + 6
30 = 5 ⋅ 6 + 0

Starting Numbers

Final 

answer



Bézout’s Theorem

We’re not going to prove this theorem…

But we’ll show you how to find 𝑠,𝑡 for any positive integers 𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that 

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

= gcd(8, 27%8)     = gcd(8, 3)

= gcd(3, 8%3)       = gcd(3, 2)

= gcd(2, 3%2)       = gcd(2,1)

= gcd(1, 2%1)        = gcd(1,0)

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward 

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 2 ⋅ 3



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 3 ⋅ 3
= −1 ⋅ 8 + 3 27 − 3 ⋅ 8
= 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)
= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting 

back, you keep 

the larger of 𝑚, 𝑛
and the number 

you just 

substituted. 

Don’t simplify 

further! (or you 

lose the form you 

need)



Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 

The multiplicative inverse of 7(mod 26)



Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5)    = gcd(5,2)

= gcd(2, 5%2)    = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ;  2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ;  1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)
= 3 ⋅ 5 − 2 ⋅ 7

= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7
3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse.

We’ll write it as 15, since we’re working mod 26.



Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 

The multiplicative inverse of 7 (𝑚𝑜𝑑 26).

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)

𝑦 ≡ 45(𝑚𝑜𝑑 26)

Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)

So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ

So {… ,−7,19,45,…19 + 26𝑘,… }


