A bad proof

Claim: if \(x \) is positive then \(x + 5 = -x - 5 \).
\[
x + 5 = -x - 5
\]
\[
|x + 5| = |-x - 5|
\]
\[
|x + 5| = |-(x + 5)|
\]
\[
|x + 5| = |x + 5|
\]
\[
0 = 0
\]

This claim is false – if you’re trying to do algebra, you need to start with an equation you know (say \(x = x \) or \(2 = 2 \) or \(0 = 0 \)) and expand to the equation you want.

Primes and FTA

Prime

An integer \(p > 1 \) is prime iff its only positive divisors are 1 and \(p \). Otherwise it is “composite”

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization.
Try a few values...

gcd(100,125)
gcd(17,49)
gcd(17,34)
gcd(13,0)

lcm(7,11)
lcm(6,10)

Greatest Common Divisor

The Greatest Common Divisor of a and b (gcd(a,b)) is the largest integer c such that $c|a$ and $c|b$.

Least Common Multiple

The Least Common Multiple of a and b (lcm(a,b)) is the smallest positive integer c such that $a|c$ and $b|c$.

```java
public int Mystery(int m, int n){
    if(m<n){
        int temp = m;
        m=n;
        n=temp;
    }
    while(n != 0) {
        int rem = m % n;
        m=n;
        n=temp;
    }
    return m;
}
```