A bad proof

Claim: if x is positive then $x+5=-x-5$.
$x+5=-x-5$
$|x+5|=|-x-5|$
$|x+5|=|-(x+5)|$
$|x+5|=|x+5|$
$0=0$
This claim is false - if you're trying to do algebra, you need to start with an equation you know (say $x=x$ or $2=2$ or $0=0$) and expand to the equation you want.

Primes and FTA

Prime

An integer $p>1$ is prime iff its only positive divisors are 1 and p. Otherwise it is "composite"

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization.

Try a few values...

$$
\operatorname{gcd}(100,125)
$$

$$
\operatorname{gcd}(17,49)
$$

$$
\operatorname{gcd}(17,34)
$$

$\operatorname{gcd}(13,0)$

> Greatest Common Divisor
> The Greatest Common Divisor of a and b $(\operatorname{gcd}(\mathrm{a}, \mathrm{b}))$ is the largest integer c such that $c \mid a$ and $c \mid b$

Icm $(7,11)$
$\operatorname{lcm}(6,10)$

Least Common Multiple

The Least Common Multiple of a and b (Icm(a,b)) is the smallest positive integer c such that $a \mid c$ and $b \mid c$.

```
public int Mystery(int m, int n) {
    if (m<n) {
        int temp = m;
        m=n;
        n=temp;
        }
        while(n != 0) {
            int rem = m % n;
            m=n;
            n=temp;
    }
    return m;
}
```

