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Don’'t just read it; fight it!
- Paul R. Halmos
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Number Theory | i



Proof By Cases

let A = {x : Prime(x)}, B = {x: 0dd(x) V PowerOfTwo(x)}
Where PowerOfTwo(x) := dc(Integer(c) Ax = 2°¢c)
Prove A € B

We need two different arguments — one for 2 and one for all the other
primes...



Proof By Cases

Let x be an arbitrary element of A.
We divide into two cases.

Case 1: x Is even
If x is even and an element of 4 (i.e. both even and prime) it must be 2.
So it equals 2”¢ for ¢ = 1, and thus is in B by definition of B.

Case 2: x is odd
Then x € B by satistying the first requirement in the definition of B.

In either case, x € B. Since an arbitrary element of A4 is also in B, we
have A € B.



Proof By Cases (Skeleton)

We divide into cases based on []

Case 1: [condition for case 1]

[suppose condition and arrive at target]
Case 2: [condition for case 2]

'suppose condition and arrive at target]
'more cases if necessary]

n every case we have [target].

Often the [target] is an intermediate one and you need a few more steps
and/or a conclusion.



Proof By Cases

Make it clear how you decide which case your in.
It should be obvious your cases are “exhaustive”

Reach the same conclusion in each of the cases, and you can say you've
got that conclusion no matter what (outside the cases).

Advanced version: sometimes you end up arguing a certain case “can’t
happen”



Two More Set Operations

Given a set, let's talk about it's powerset.

P(A) = {X:X Is a subset of A}
The powerset of A is the set of all subsets of A.

P(1,2}) = {0,{1}12},{1,2}}



Two More Set Operations

AXB={(ab):a€ ANDb € B}
Called “the Cartesian product” of A and B.

R X R is the “real plane” ordered pairs of real numbers.

{1,2} x {1,2,3} = {(1,1), (1,2),(1,3),(2,1),(2,2), (2,3)}



‘ Read on Your Own



Some old friends (and some new ones)

N is the set of Natural Numbers; N = {0, 1, 2, ...}

Z is the set of Integers; Z =1{..., -2,-1,0,1, 2, ..}

Q is the set of Rational Numbers; e.g. V2, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, i,v/2
[n] is the set {1, 2, ..., nN} when n is a positive integer

{} = D is the empty set; the only set with no elements



Some old friends (and some new ones

Our natural numbers start at 0.
Common in CS, other resources start at 1.

N is the set of Natural Numbers; N = {0, 1, 2, ...}

Z is the set of Integers; Z = {..., -2,-1,0,1, 2, ..}

Q is the set of Rational Numbers; e.g. 2, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, i,v/2
[n] is the set {1, 2, ..., N} when n is a positive integer

{} = D is the empty set; the only set with no elements

In LaTeX \mathbb{R}
In Office \doubleR

Use this symbol not {}.

In LaTex \varnothing In Office \emptyset.



More connectors!

A\ B "A minus B”

A\B={x:x€e AANx & B}

A @ B "XOR" (also called “symmetric difference”)

ADB={x:xe AD x € B}




‘ Number Theory



Why Number Theory?

Applicable in Computer Science

“hash functions” (you'll see them in 332) commonly use modular arithmetic
Much of classical cryptography is based on prime numbers.

More importantly, a great playground for writing English proofs.



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Key generation [edit]
The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct prime numbers p and gq.
e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.
¢ p and g are kept secret.
2. Compute n = pg.
¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.
3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(g) = g — 1. Hence A(n) = lem(p -1, g — 1).
¢ A(n) is kept secret.
¢ The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) = |ab|/gcd(a, b).
4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(n) are coprime.
¢ e having a short bit-length and small Hamming weight results in more efficient encryption — the most commonly chosen value for e is 276 4+ 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value
for e has been shown to be less secure in some settings.[19)
¢ ¢ is released as part of the public key.
5. Determine d as d = e”' (mod A(n)); that is, d is the modular multiplicative inverse of e modulo A(n).
¢ This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.
e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryption) exponent d, which must be kept secret. p, g, and A(n) must also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Key generation | edit] Prime Numbers

The keys for the RSA algorithm are genera

1. Choose two distinct prime numbers p and gq.

e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.

* pand g are kept secret. Modular Arithmetic
2. Compute n = pg.

¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.
3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(q) = g — 1. Hence A(n) =lem(p -1, g — 1).

¢ A(n) is kept secret.

e The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) MOdUIG r MUI“ pllcq“‘/e Inve rse

4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(

¢ e having a short bit-length and small Hamming weight results in more efficient eng e most commonly chosen value for e is 216 + 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value

for e has been shown to be less secure in some settings.['?!
e ¢ is released as part of the public key. BeZOUt’S Theorem
5. Determine d as d = ' (mod A(n)); that is, d is the modular multiplicative inverse of @ modulo A(n).
¢ This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.

e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryp EXfend ed EUCIid iCI n Algorifhm also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
ce=m° (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption [edit]
Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given m1, she can recover the original message M by reversing the padding scheme.



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
c=m® (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption [edit] Modular Exponentiation

Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given 1, she can recover the original message M by reversing the padding scheme.



Divides

Divides

For integers x,y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

“x is a divisor of y” or "x is a factor of y" means (essentially) the same
thing as x divides y.
(“essentially” because of edge cases like when a number is negative or y = 0)

“The small number goes first”



Divides

Divides

For integers x,y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

Which of these are true?
2|4 4|2 2| — 2

50 0|5 115



Divides

Divides

For integers x,y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

Which of these are true?

2|4 True 4|2 False 2| —2 True

5|0 True 0|5 False 1|5 True



A useful theorem

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

Remember when non integers were still secret, you did division like this?

q is the "quotient”
r is the “remainder”



Unique

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

“unique” means “only one”....but be careful with how this word is used.

r IS unique, given a, d. — it still depends on a, d but once you've chosen
a and d

‘unique” is not saying Irva,d P(a,d,r)
It's saying Va,d3r[P(a,d,r) A|P(a,d,x) = x =r]]



A useful theorem

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

The q is the result of a/d (integer division) in Java
The r is the result of a%d in Java

That's slightly a lie, r is always non-
negative, Java's % operator sometimes
gives a negative number.




Terminology

You might have called the % operator in Java “mod”

We're going to use the word "mod” to mean a closely related, but
different thing.

Java's % is an operator (like + or -) you give it two numbers, it produces
a number.

The word “mod” in this class, refers to a set of rules



Modular Arithmetic

"arithmetic mod 12" is familiar to you. You do it with clocks.

What's 3 hours after 10 o'’clock?
1 o'clock. You hit 12 and then “wrapped around”

“13 and 1 are the same, mod 12" “-11 and 1 are the same, mod 12"

We don't just want to do math for clocks — what about if we need to talk
about parity (even vs. odd) or ignore higher-order-bits (mod by 16, for
example)



Modular Arithmetic

To say “the same” we don’t want to use = ... that means the normal =

We'll write 13 = 1(mod 12)

= because "equivalent” is “like equal,” and the “modulus” we're using in
parentheses at the end so we don't forget it.
(we'll also say “congruent mod 12")

The notation here is bad. We all agree it's bad. Most people still use it.

13 =;, 1 would have been better. “mod 12" is giving you information
about the = symbol, it's not operating on 1.



Modular Arithmetic

We need a definition! We can't just say “it’s like a clock”

Pause what do you expect the definition to be?
s it related to % ?



Modular Arithmetic

We need a definition! We can't just say “it's like a clock”

Pause what do you expect the definition to be?

Equivalence in modular arithmetic
leta €Z,b €Z,n€Zandn > 0.

We say a = b (mod n) if and only if n|(b — a)

Huh?



Long Pause

It's easy to read something with a bunch of symbols and say “yep, those
are symbols." and keep going

STOP Go Back.

You have to fight the symbols they're probably trying to pull a fast one
on you.

Same goes for when I'm presenting a proof — you shouldn't just believe
me — I'm wrong all the time!

You should be trying to do the proof with me. Where do you think we're
going next?



Why?

We'll post an optional (15-minute-ish) video over the weekend with why.
Here's the short version:

It reaIIy IS equivalent to "what we expected”
asn=bs%n if and only if n|(b — a)

When you subtract,
! 200000 E8ES o

the remainders cancel.

What you're left with
O TTTTITITTITT T T 1 I Makatae

is @ multiple of 12.
27-15=12 @ESEaEEEEEeE®

The divides version is much easier to use in proofs...



Claim: forall a,b,c,n € Z,n=0:a=b (modn) - a+c =b + c (modn)

Before we start, we must know:
1. What every word in the statement means.
2. What the statement as a whole means.

3. Where to start. Divides

4. What target is. : o -
at your target 15 For integers x, y we say x|y (“x divides y”) iff

there is an integer z such that xz = y.

Equivalence in modular arithmetic

Pollev.com/uwese311 leta€Z,beZneZandn > 0.
We say a = b (mod n) if and only if n|(b — a)



Claim:a,b,c,cn€Zn=>0:a=b(modn) >a+c=>b+c(modn)
Proof:

Let a, b, c,n be arbitrary integers with n = 0,
and suppose a = b(mod n).

Divides

For integers x, y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

Equivalence in modular arithmetic

Cl+CEb+C(mOdTL) leta€Z,b€eZneZandn > 0.
We say a = b (mod n) if and only if n|(b — a)




A proof

Claim:a,b,c,cn€Z,n=0:a=b(modn) »>a+c=b>b+ c(modn)
Proof:

Let a, b, c,n be arbitrary integers with n > 0,
and suppose a = b(mod n).

By definition of mod, n|(b — a)

By definition of divides, nk = (b — a) for some integer k.
Adding and subtracting ¢, we have nk = (|b + c] — [a + c]).
Since k is an integer n|(|b + c] — [a + ¢])

By definition of mod, a + ¢ = b + ¢ (mod n)



You Try!

Claim: forall a,b,c,n € Z,n > 0:If a = b (mod n) then ac = bc (mod n)

Before we start we must know:
1. What every word in the statement means.
2. What the statement as a whole means.

. Where to start. Divides
W

nat your target is.
For integers x, y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

'.hUU

Equivalence in modular arithmetic

leta €Z,b€Zn€eZandn > 0.
We say a = b (mod n) if and only if n|(b — a)




Claim: for all a,b,c,n € Z,n > 0: If a = b (mod n) then ac = bc (mod n)
Proof:

Let a, b, c,n be arbitrary integers withn > 0
and suppose a = b(mod n).

ac = bc (mod n)



Claim: for all a,b,c,n € Z,n > 0: If a = b (mod n) then ac = bc (mod n)
Proof:

Let a, b, c,n be arbitrary integers withn > 0
and suppose a = b(mod n).

By definition of mod n|(b — a)

By definition of divides, nk = b — a for some integer k
Multiplying both sides by ¢, we have n(ck) = bc — ac.

Since ¢ and k are integers, n|(bc — ac) by definition of divides.

So, ac = bc (mod n), by the definition of mod.



Don't lose your intuition!

Let's check that we understand “intuitively” what mod means:
x =0 (mod 2)
—1 = 19 (mod 5)

y = 2 (mod 7)



‘ Extra Set Practice



Extra Set Practice

ShowAUu(BNnC)=(AUB)N (AU ()

Proof:

Firse, we'll show: AU(BNC) S (AUB)N(AUC(C)
Let x be an arbitrary element ofA U (B N C).
Then by definition of U,n we have:
XEAV(x€EBAx€EC(D)

Applying the distributive law, we get
(xeAVxEB)A(x€EAVXxECD)

Applying the definition of union, we have:
x€(AUB)andx € (AU )
By definition of intersection we have x € (AU B) N (AU C).
SOAU(BNC)S(AUB)N(AUC).

Now we show (AUB)N(AUC) S AU(BNC(C)

Let x be an arbitrary element of (AU B) N (AU C).

By definition of intersection and union, (x EAVx € B)A(x EAVx €C)

Applying the distributive law, we have x e AV (x € BAx € ()

Applying the definitions of union and intersection, we have x € AU (B N C)

So(AUB)N(AuC)<c AUu(BnC().

Combining the two directions, since both sets are subsets of each other, we have AU(BNC) =(AUB)N (AU ()



Extra Set Practice

Suppose A € B. Show that P(A) € P(B).
Let A, B be arbitrary sets such that A € B.
Let X be an arbitrary element of P(A4).

By definition of powerset, X € A.

Since X € A, every element of X is also in A. And since A € B, we also
have that every element of X is also in B.

Thus X € P(B) by definition of powerset.

Since an arbitrary element of P(A4) is also in P(B), we have P(A) <
P(B).



Extra Set Practice

Disprove: f A€ (BUC)thenAS BorAcC

Consider A = {1,2,3}, B = {1,2},C = {3,4}.
BucC={1234}sowedohaveAS (BUC), butA< Band A & C.

When you disprove a Vv, you're just providing a counterexample (you're
showing 3) — your proof won't have “let x be an arbitrary element of A.”



