Proof By Cases

Let $A = \{x : \text{Prime}(x)\}, B = \{x : \text{Odd}(x) \lor \text{PowerOfTwo}(x)\}$ Where PowerOfTwo $(x) \coloneqq \exists c(\text{Integer}(c) \land x = 2^{c})$ Prove $A \subseteq B$

We need two different arguments – one for 2 and one for all the other primes...

Divides			
Divides			
For integers there is a	For integers x, y we say $x y$ (" x divides y ") iff there is an integer z such that $xz = y$.		
Which of these are true?			
2 4	4 2	2 - 2	
5 0	0 5	1 5	

Claim: for all $a, b, c, n \in \mathbb{Z}, n \ge 0$: $a \equiv b \pmod{n} \rightarrow a + c \equiv b + c \pmod{n}$				
Before we start, we must know:				
1. What every word in the statement means.				
2. What the statement as a whole means.				
3. Where to start.	Divides			
4. What your target is.	For integers x, y we say $x y$ (" x divides y ") iff there is an integer z such that $xz = y$.			
	Equivalence in modular arithmetic			
Pollev.com/uwcse311	Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $n \in \mathbb{Z}$ and $n > 0$. We say $a \equiv b \pmod{n}$ if and only if $n (b - a)$			

