Proof By Cases

Let $A=\{x: \operatorname{Prime}(x)\}, B=\{x: \operatorname{Odd}(x) \vee \operatorname{PowerOfTwO}(x)\}$
Where PowerOfTwo $(x):=\exists c\left(\right.$ Integer $\left.(c) \wedge x=2^{\wedge} c\right)$
Prove $A \subseteq B$

We need two different arguments - one for 2 and one for all the other primes...

Divides

Divides

> For integers x, y we say $x \mid y$ (" x divides $y^{\prime \prime}$) iff there is an integer z such that $x z=y$.

Which of these are true?
$2 \mid 4$
$4 \mid 2$
$2 \mid-2$
$5 \mid 0$
$0 \mid 5$
1|5

Claim: for all $a, b, c, n \in \mathbb{Z}, n \geq 0: a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$

Before we start, we must know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

Divides

For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Equivalence in modular arithmetic

Pollev.com/uwcse311
Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

You Try!

Claim: for all $a, b, c, n \in \mathbb{Z}, n>0$: If $a \equiv b(\bmod n)$ then $a c \equiv b c(\bmod n)$
Before we start we must know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

Divides

For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Equivalence in modular arithmetic

Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$. We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

