Quantifier Proofs, English Proofs $\left.\right|_{\text {lectue }} ^{\substack{\text { cesind }}}$

The Direct Proof Rule

Write a proof "given A conclude B "

$$
A \rightarrow B
$$

This rule is different from the others $-A \Rightarrow B$ is not a "single fact." It's an observation that we've done a proof. (i.e. that we showed fact B starting from A.)

We will get a lot of mileage out of this rule...starting today!

Given: $((p \rightarrow q) \wedge(q \rightarrow r))$ Show: $(p \rightarrow r)$

Here's an incorrect proof.

1. $(p \rightarrow q) \wedge(q \rightarrow r)$	Given
2. $p \rightarrow q$	Eliminate $\wedge(1)$
3. $q \rightarrow r$	Eliminate $\wedge(1)$
4. p	Given???
5. q	Modus Ponens 4,2
6. r	Modus Ponens 5,3
7. $p \rightarrow r$	Direct Proof Rule

Given: $((p \rightarrow q) \wedge(q \rightarrow r))$ Show: $(p \rightarrow r)$

Here's an incorrect proof.

```
1. }(p->q)\wedge(q->r
2. }p->
3. }q->
4. p
5. q
6. r
7. p->r
```

Proofs are supposed to be lists of facts. Some of these "facts" aren't really facts...

Eliminate \wedge (1)
Given ????
Modus Ponens 4,2
Modus Ponens 5,3
Direct Proof Rule

These facts depend on p. But p isn't known generally.

It was assumed for the purpose of proving $p \rightarrow r$.

Given: $((p \rightarrow q) \wedge(q \rightarrow r))$ Show: $(p \rightarrow r)$

Here's an incorrect proof.

```
1. }(p->q)\wedge(q->r
2. }p->
3. }q->
4. p
5. q
6. r
7. p->r
```


Proofs are supposed to be lists of facts. Some of these "facts" aren't really facts...

Eliminate \wedge (1)
Given ????
Modus Ponens 4,2]
Modus Ponens 5,3
Direct Proof Rule

These facts depend on p. But p isn't known generally.

It was assumed for the purpose of proving $p \rightarrow r$.

Given: $((p \rightarrow q) \wedge(q \rightarrow r))$ Show: $(p \rightarrow r)$

Here's a corrected version of the proof.

```
1. }(p->q)\wedge(q->r
2. p->q
3. q->r
```

$4.1 p$
$4.2 q$
$4.3 r$
5. $p \rightarrow r$

Given
Eliminate $\wedge 1$
Eliminate ^1
Assumption
Modus Ponens 4.1,2
Modus Ponens 4.2,3
Direct Proof Rule
The conclusion is an unconditional fact (doesn't depend on p) so it goes back up a level

Try it!

Given: $p \vee q_{1}(r \wedge s) \rightarrow \neg q, r . \stackrel{A \vee B, \neg A}{\therefore \quad B}$ Show: $s \rightarrow p$

You can still use all the propositional logic equivalences too!

Try it!

Given: $p \vee q,(r \wedge s) \rightarrow \neg q, r$.
Show: $s \rightarrow p$

1. $p \vee q$
2. $(r \wedge s) \rightarrow \neg q$
3. r
$4.1 s$
$4.2 r \wedge s$
$4.3 \neg q$
$4.4 q \vee p$
$4.5 p$
4. $s \rightarrow p$

Given
Given
Given
Assumption
Intro $\wedge(3,4.1)$
Modus Ponens (2, 4.2)
Commutativity (1)
Eliminate V (4.4, 4.3)
Direct Proof Rule

Inference Rules

You can still use all the propositional logic equivalences too!

Inference Proofs in Predicate Logic

Proofs with Quantifiers

We've done symbolic proofs with propositional logic.
To include predicate logic, we'll need some rules about how to use quantifiers.

Let's see a good example, then come back to those "arbitrary" and "fresh" conditions.

Proof Using Quantifiers

Suppose we know $\exists x P(x)$ and $\forall y[P(y) \rightarrow Q(y)]$. Conclude $\exists x Q(x)$.

Proof Using Quantifiers

Suppose we know $\exists x P(x)$ and $\forall y[P(y) \rightarrow Q(y)]$. Conclude $\exists x Q(x)$.

	$P(c)$ for some c
Intro ヨ	

Proof Using Quantifiers

Suppose we know $\exists x P(x)$ and $\forall y[P(y) \rightarrow Q(y)]$. Conclude $\exists x Q(x)$.

1. $\exists x P(x)$
2. $P(a)$
3. $\forall y[P(y) \rightarrow Q(y)]$
4. $P(a) \rightarrow Q(a)$
5. $Q(a)$
6. $\exists x Q(x)$

Given
Eliminate $\exists 1$
Given
Eliminate $\forall 3$
Modus Ponens 2,4 Intro $\exists 5$
Intro $\exists \frac{P(c) \text { for some } c}{\therefore \exists x P(x)}$
$\therefore \quad \exists$

Proofs with Quantifiers

We've done symbolic proofs with propositional logic.
To include predicate logic, we'll need some rules about how to use quantifiers.

"arbitrary" means a is "just" a variable in our domain.
It doesn't depend on any other variables and wasn't introduced with other information.

Proofs with Quantifiers

We've done symbolic proofs with propositional logic.
To include predicate logic, we'll need some rules about how to use quantifiers.

"fresh" means c is a new symbol (there isn't another c somewhere else in our proof).

Fresh and Arbitrary

Suppose we know $\exists x P(x)$. Can we conclude $\forall x P(x)$?

\author{

1. $\exists x P(x)$ Given
 2. $P(a) \quad$ Eliminate \exists (1)
 3. $\forall x P(x)$ Intro $\forall(2)$
}

Intro \exists
$\therefore \exists x P(x)$ for some c
$\exists x$

This proof is definitely wrong.
(take $P(x)$ to be "is a prime number")

a wasn't arbitrary. We knew something about it - it's the x that exists to make $P(x)$ true.

Fresh and Arbitrary

You can trust a variable to be arbitrary if you introduce it as such. If you eliminated a \forall to create a variable, that variable is arbitrary. Otherwise it's not arbitrary - it depends on something.

You can trust a variable to be fresh if the variable doesn't appear anywhere else (i.e. just use a new letter)

Fresh and Arbitrary

There are no similar concerns with these two rules.
Want to reuse a variable when you eliminate \forall ? Go ahead.
Have a c that depends on many other variables, and want to intro \exists ?
Also not a problem.

Arbitrary

In section, you said: $[\exists y \forall x P(x, y)] \rightarrow[\forall x \exists y P(x, y)]$. Let's prove it!!

Arbitrary

In section, you said: $[\exists y \forall x P(x, y)] \rightarrow[\forall x \exists y P(x, y)]$. Let's prove it!!

```
    1.1 }\existsy\forallxP(x,y
    1.2 }\forallxP(x,c
    1.3 Let a be arbitrary.
    1.4 P(a,c)
    1.5 \existsyP(a,y)
    1.6 }\forallx\existsyP(x,y
2. [\existsy\forallx P(x,y)]->[\forallx\existsyP(x,y)] Direct Proof Rule
```


Arbitrary

In section, you said: $[\exists y \forall x P(x, y)] \rightarrow[\forall x \exists y P(x, y)]$. Let's prove it!!

```
    1.1 \existsy\forallx P(x,y) Assumption
    1.2 }\forallxP(x,c)\quadElim \exists (1.1
    Elim \forall (1.2)
    Intro \exists (1.4)
    Intro \forall (1.5)
It is not required to have "variable is
```

1.4 $P(a, c) \quad E l i m \quad \forall(1.2)$
$1.5 \exists y P(a, y)$
$1.6 \forall x \exists y P(x, y)$
2. $[\exists y \forall x P(x, y)] \rightarrow[\forall x \exists y P(x, y)]$ Direct Proof Rule

Find The Bug
Let your domain of discourse be integers.
We claim that given $\forall x \exists y \operatorname{Greater}(y, x)$, we can conclude $\exists y \forall x \operatorname{Greater}(y, x)$ Where Greater (y, x) means $y>x$

1. $\forall x \exists y \operatorname{Greater}(y, x)$

Given

2. Let a be an arbitrary integer --
3. $\exists y \operatorname{Greater}(y, a)$
4. Greater (b, a)
5. $\forall x$ Greater (b, x)
6. $\exists y \forall x$ Greater (y, x)

Elim \forall (1)
Elim \exists (2)
Intro \forall (4)
Intro \exists (5)

Find The Bug

1. $\forall x \exists y$ Greater (y, x)
2. Let a be an arbitrary integer --
3. $\exists y \operatorname{Greater}(y, a)$
4. Greater (b, a)
5. $\forall x$ Greater (b, x)
6. $\exists y \forall x$ Greater (y, x)

Given

Elim \forall (1)
Elim \exists (2)
Intro \forall (4)
Intro \exists (5)
b is not a single number! The variable b depends on a. You can't get rid of a while b is still around.
What is b ? It's probably something like $a+1$.

Bug Found

There's one other "hidden" requirement to introduce \forall.
"No other variable in the statement can depend on the variable to be generalized"

Think of it like this $--b$ was probably $a+1$ in that example.
You wouldn't have generalized from Greater $(a+1, a)$
To $\forall x$ Greater $(a+1, x)$. There's still an a, you'd have replaced all the a 's.
x depends on y if y is in a statement when x is introduced.
This issue is much clearer in English proofs, which we'll start next time.

English Proofs

What's Next

We're taking off the training wheels!
Our goal with writing symbolic proofs was to prepare us to write proofs in English.
Let's get started.
The next 3 weeks:
Practice communicating clear arguments to others.
Learn new proof techniques.
Learn fundamental objects (sets, number theory) that will let us talk more easily about computation at the end of the quarter.

Warm-up

Let your domain of discourse be integers.
Let $\operatorname{Even}(x):=\exists y(x=2 y)$.

Even

An integer x is even if (and only if) there exists an
integer \mathbf{z}, such that $x=2 z$.

Prove "if x is even then x^{2} is even."
Write a symbolic proof (with the extra rules "Definition of Even" and "Algebra").
Then we'll write it in English.

What's the claim in symbolic logic? $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

If x is even, then x^{2} is even.

1. Let a be arbitrary
2.1 Even (a)
$2.2 \exists y(2 y=a)$
$2.32 z=a$
$2.4 a^{2}=4 z^{2}$
$2.5 a^{2}=2 \cdot 2 z^{2}$
$2.6 \exists w\left(2 w=a^{2}\right)$
2.7 Even $\left(a^{2}\right)$
2. Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption

Definition of Even (2.1)
Elim \exists (2.2)
Algebra (2.3)
Alegbra (2.4)
Intro ヨ (2.5)
Definition of Even
Direct Proof Rule (2.1-2.7)
Intro \forall (3)

If x is even, then x^{2} is even.

1. Let a be arbitrary
2.1 Even (a)
$2.2 \exists y(2 y=a)$
$2.32 z=a$
$2.4 a^{2}=4 z^{2}$
$2.5 a^{2}=2 \cdot 2 z^{2}$
$2.6 \exists w\left(2 w=a^{2}\right)$
2.7 Even $\left(a^{2}\right)$
2. Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$ Intro $\forall(3)$

Let x be an arbitrary even integer.
By definition, there is an integer y such that $2 y=x$.

Squaring both sides, we see that $x^{2}=$ $4 y^{2}=2 \cdot 2 y^{2}$.

Because y is an integer, $2 y^{2}$ is also an integer, and x^{2} is two times an integer. Thus x^{2} is even by the definition of
Direct Proof Rule (2.1-2.7) even.
Since x was an arbitrary even integer, we can conclude that for every even x, x^{2} is also even.

Converting to English

Start by introducing your assumptions. Introduce variables with "let." Introduce assumptions with "suppose."
Always state what type your variable is. English proofs don't have an established domain of discourse.

Don't just use "algebra" explain what's going on. We don't explicitly intro/elim \exists / \forall so we end up with fewer "dummy variables"

Let x be an arbitrary even integer.
By definition, there is an integer y such that $2 y=x$.

Squaring both sides, we see that $x^{2}=$ $4 y^{2}=2 \cdot 2 y^{2}$.

Because y is an integer, $2 y^{2}$ is also an integer, and x^{2} is two times an integer. Thus x^{2} is even by the definition of even.
Since x was an arbitrary even integer, we can conclude that for every even x, x^{2} is also even.

Why English Proofs?

Those symbolic proofs seemed pretty nice. Computers understand them, and can check them.

So what's up with these English proofs?

They're far easier for people to understand.
But instead of a computer checking them, now a human is checking them.

