
Quantifier Proofs,
English Proofs

CSE 311 Spring 22

Lecture 8

The Direct Proof Rule

Write a proof “given 𝐴 conclude 𝐵” 𝐴 ⇒ 𝐵

𝐴 → 𝐵𝐴 → 𝐵

Direct Proof

rule

This rule is different from the others – 𝐴 ⇒ 𝐵 is not a “single fact.”

It’s an observation that we’ve done a proof. (i.e. that we showed fact 𝐵 starting

from 𝐴.)

We will get a lot of mileage out of this rule…starting today!

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ (1)

Eliminate ∧ (1)

Given???

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ 1

Eliminate ∧ (1)

Given ????

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Proofs are supposed to be lists of facts.

Some of these “facts” aren’t really facts…

These facts depend on 𝑝.

But 𝑝 isn’t known generally.

It was assumed for the

purpose of proving 𝑝 → 𝑟.

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ 1

Eliminate ∧ (1)

Given ????

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Proofs are supposed to be lists of facts.

Some of these “facts” aren’t really facts…

These facts depend on 𝑝.

But 𝑝 isn’t known generally.

It was assumed for the

purpose of proving 𝑝 → 𝑟.

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s a corrected version of the proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟
4.1 𝑝

4.2 𝑞

4.3 𝑟

5. 𝑝 → 𝑟

Given

Eliminate ∧ 1
Eliminate ∧ 1

Assumption
Modus Ponens 4.1,2
Modus Ponens 4.2,3

Direct Proof Rule

When introducing an assumption

to prove an implication:

Indent, and change numbering.

When reached your

conclusion, use the Direct

Proof Rule to observe the

implication is a fact.

The conclusion is an unconditional fact (doesn’t

depend on 𝑝) so it goes back up a level

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟.
Show: 𝑠 → 𝑝

Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟.
Show: 𝑠 → 𝑝

1. 𝑝 ∨ 𝑞
2. 𝑟 ∧ 𝑠 → ¬𝑞
3. 𝑟

4.1 𝑠
4.2 𝑟 ∧ 𝑠
4.3 ¬𝑞
4.4 𝑞 ∨ 𝑝
4.5 𝑝

5. 𝑠 → 𝑝

Given

Given

Given

Assumption

Intro ∧ (3,4.1)

Modus Ponens (2, 4.2)

Commutativity (1)

Eliminate ∨ (4.4, 4.3)

Direct Proof Rule

Inference Rules

𝐴 ∧ 𝐵

𝐴, 𝐵∴
Eliminate ∧

𝐴 ∨ 𝐵,¬𝐴

𝐵∴
Eliminate ∨

𝐴; 𝐵

𝐴 ∧ 𝐵∴
Intro ∧

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨

𝐴 ⇒ 𝐵

𝐴 → 𝐵

Direct Proof

rule

𝑃 → 𝑄; 𝑃

𝑄∴

Modus

Ponens

You can still use all the

propositional logic

equivalences too!

Inference Proofs in Predicate Logic

Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic.

To include predicate logic, we’ll need some rules about how to use
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Let’s see a good example, then come back to those “arbitrary” and “fresh”
conditions.

Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]. Conclude ∃𝑥𝑄(𝑥).

1. ∃𝑥𝑃(𝑥)
2. 𝑃(𝑎)
3. ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]
4. 𝑃 𝑎 → 𝑄(𝑎)
5. 𝑄(𝑎)
6. ∃𝑥𝑄(𝑥)

Given

Eliminate ∃ 1

Given

Eliminate ∀ 3

Modus Ponens 2,4

Intro ∃ 5 ∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic.

To include predicate logic, we’ll need some rules about how to use
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“arbitrary” means 𝑎 is “just” a variable in our domain.

It doesn’t depend on any other variables and wasn’t introduced

with other information.

Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic.

To include predicate logic, we’ll need some rules about how to use
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“fresh” means 𝑐 is a new symbol (there isn’t another 𝑐
somewhere else in our proof).

Fresh and Arbitrary

1. ∃𝑥 𝑃 𝑥

2. 𝑃(𝑎)

3. ∀𝑥 𝑃(𝑥)

Given

Eliminate ∃ (1)

Intro ∀ (2)

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

This proof is definitely wrong.

(take 𝑃(𝑥) to be “is a prime number”)

Suppose we know ∃𝑥𝑃 𝑥 . Can we conclude ∀𝑥𝑃 𝑥 ?

𝑎 wasn’t arbitrary. We knew something about

it – it’s the 𝑥 that exists to make 𝑃 𝑥 true.

Fresh and Arbitrary

You can trust a variable to be arbitrary if you introduce it as such.

If you eliminated a ∀ to create a variable, that variable is arbitrary.
Otherwise it’s not arbitrary – it depends on something.

You can trust a variable to be fresh if the variable doesn’t appear
anywhere else (i.e. just use a new letter)

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Fresh and Arbitrary

There are no similar concerns with these two rules.

Want to reuse a variable when you eliminate ∀? Go ahead.

Have a 𝑐 that depends on many other variables, and want to intro ∃?

Also not a problem.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦]. Let’s prove it!!

Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐
1.3 Let 𝑎 be arbitrary.

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

--

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule

Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule

It is not required to have “variable is

arbitrary” as a step before using it.

But many people (including Robbie)

find it helpful.

Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. Greater(𝑏, 𝑎)

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5)

Let your domain of discourse be integers.

We claim that given ∀𝑥∃𝑦 Greater 𝑦, 𝑥 , we can conclude ∃𝑦∀𝑥 Greater(𝑦, 𝑥)
Where Greater(𝑦, 𝑥) means 𝑦 > 𝑥

Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. Greater(𝑏, 𝑎)

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5)

𝑏 is not a single number! The variable 𝑏 depends on 𝑎. You can’t get

rid of 𝑎 while 𝑏 is still around.

What is 𝑏? It’s probably something like 𝑎 + 1.

Bug Found

There’s one other “hidden” requirement to introduce ∀.

“No other variable in the statement can depend on the variable to be
generalized”

Think of it like this -- 𝑏 was probably 𝑎 + 1 in that example.

You wouldn’t have generalized from Greater(𝑎 + 1, 𝑎)

To ∀𝑥 Greater(𝑎 + 1, 𝑥). There’s still an 𝑎, you’d have replaced all the 𝑎’s.

𝑥 depends on 𝑦 if 𝑦 is in a statement when 𝑥 is introduced.

This issue is much clearer in English proofs, which we’ll start next time.

English Proofs

What’s Next

We’re taking off the training wheels!

Our goal with writing symbolic proofs was to prepare us to write proofs
in English.

Let’s get started.

The next 3 weeks:
Practice communicating clear arguments to others.

Learn new proof techniques.

Learn fundamental objects (sets, number theory) that will let us talk more easily
about computation at the end of the quarter.

Warm-up

Let your domain of discourse be integers.

Let Even 𝑥 ∶= ∃𝑦(𝑥 = 2𝑦).

Prove “if 𝑥 is even then 𝑥2 is even.”

Write a symbolic proof (with the extra rules “Definition of Even” and
“Algebra”).

Then we’ll write it in English.

What’s the claim in symbolic logic? ∀𝑥(Even 𝑥 →Even 𝑥2)

An integer 𝑥 is even if (and

only if) there exists an

integer 𝒛, such that 𝒙 = 𝟐𝒛.

Even

If 𝑥 is even, then 𝑥2 is even.

1. Let 𝑎 be arbitrary

2.1 Even(𝑎)

2.2 ∃𝑦 (2𝑦 = 𝑎)

2.3 2𝑧 = 𝑎

2.4 𝑎2 = 4𝑧2

2.5 𝑎2 = 2 ⋅ 2𝑧2

2.6 ∃𝑤(2𝑤 = 𝑎2)

2.7 Even(𝑎2)

3. Even 𝑎 →Even(𝑎2)

4. ∀𝑥(Even 𝑥 →Even(𝑥2))

Assumption

Definition of Even (2.1)

Elim ∃ 2.2

Algebra (2.3)

Alegbra (2.4)

Intro ∃ (2.5)

Definition of Even

Direct Proof Rule (2.1-2.7)

Intro ∀ (3)

If 𝑥 is even, then 𝑥2 is even.

1. Let 𝑎 be arbitrary

2.1 Even(𝑎)

2.2 ∃𝑦 (2𝑦 = 𝑎)

2.3 2𝑧 = 𝑎

2.4 𝑎2 = 4𝑧2

2.5 𝑎2 = 2 ⋅ 2𝑧2

2.6 ∃𝑤(2𝑤 = 𝑎2)

2.7 Even(𝑎2)

3. Even 𝑎 →Even(𝑎2)

4. ∀𝑥(Even 𝑥 →Even(𝑥2))

Assumption

Definition of Even (2.1)

Elim ∃ 2.2

Algebra (2.3)

Alegbra (2.4)

Intro ∃ (2.5)

Definition of Even

Direct Proof Rule (2.1-2.7)

Intro ∀ (3)

Let 𝑥 be an arbitrary even integer.

By definition, there is an integer 𝑦 such

that 2𝑦 = 𝑥.

Squaring both sides, we see that 𝑥2 =
4𝑦2 = 2 ⋅ 2𝑦2.

Because 𝑦 is an integer, 2𝑦2 is also an

integer, and 𝑥2 is two times an integer.

Thus 𝑥2 is even by the definition of

even.

Since 𝑥 was an arbitrary even integer,

we can conclude that for every even 𝑥,

𝑥2 is also even.

Converting to English

Start by introducing your assumptions.

Introduce variables with “let.” Introduce
assumptions with “suppose.”

Always state what type your variable is. English
proofs don’t have an established domain of
discourse.

Don’t just use “algebra” explain what’s going on.

We don’t explicitly intro/elim ∃/∀ so we end up
with fewer “dummy variables”

Let 𝑥 be an arbitrary even integer.

By definition, there is an integer 𝑦 such

that 2𝑦 = 𝑥.

Squaring both sides, we see that 𝑥2 =
4𝑦2 = 2 ⋅ 2𝑦2.

Because 𝑦 is an integer, 2𝑦2 is also an

integer, and 𝑥2 is two times an integer.

Thus 𝑥2 is even by the definition of

even.

Since 𝑥 was an arbitrary even integer,

we can conclude that for every even 𝑥,
𝑥2 is also even.

Why English Proofs?

Those symbolic proofs seemed pretty nice. Computers understand
them, and can check them.

So what’s up with these English proofs?

They’re far easier for people to understand.

But instead of a computer checking them, now a human is checking
them.

