Quantifiers

We have two extra symbols to indicate which way we're using the variable.

1. The statement is true for every x, we just want to put a name on it.
$\forall x(\mathrm{p}(\mathrm{x}) \wedge q(x))$ means "for every x in our domain, $p(x)$ and $q(x)$ both evaluate to true."
2. There's some x out there that works, (but I might not know which it is, so I'm using a variable).
$\exists x(p(x) \wedge q(x))$ means "there is an x in our domain, such that $p(x)$ and $q(x)$ are both true.

Translations

"For every x, if x is even, then $x=2$."
"There are x, y such that $\mathrm{x}<y$."
$\exists x(\operatorname{Odd}(x) \wedge \operatorname{LessThan}(x, 5))$
$\forall y(\operatorname{Even}(y) \wedge \operatorname{Odd}(y))$

Try it yourselves

Suppose you know $p \rightarrow q, \neg S \rightarrow \neg q$, and p.
Give an argument to conclude s.

Pollev.com/uwcse 311

Help me adjust my explanation!

Inference Rules

Direct Proof rule	$A \Rightarrow B$
	$A \rightarrow B$

A
Intro V

$$
\therefore A \vee B, B \vee A
$$

