A More Complicated Statement

"Robbie knows the Pythagorean Theorem if he is a mathematician and took geometry, and he is a mathematician or did not take geometry."

Is this a proposition?

Wed like to understand what this proposition means.

In particular, is it true?

De Morgan's Laws

Example: $\neg(p \wedge q) \equiv \neg p \vee \neg q$

\mathbf{p}	\mathbf{q}	$\neg \mathbf{p}$	$\neg \mathbf{q}$	$\neg \mathbf{p} \vee \neg \mathbf{q}$	$\mathbf{p} \wedge \mathbf{q}$	$\neg(\mathbf{p} \wedge \mathbf{q})$	$\neg(\mathbf{p} \wedge \mathbf{q}) \leftrightarrow(\neg \mathbf{p} \vee \neg \mathbf{q})$
T	T	F	F	F	T	F	T
T	F	F	T	T	F	T	T
F	T	T	F	T	F	T	T
F	F	T	T	T	F	T	T

Law of Implication

Implications are hard.
AND/OR/NOT make more intuitive sense to me...

can we rewrite implications using just ANDs ORs and NOTs?

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

One approach: think "when is this implication false?" then negate it (you might want one of DeMorgan's Laws!

Our First Proof

$(p \wedge q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q) \equiv$

None of the rules look like this

Practice of Proof-Writing:
Big Picture...WHY do we think this
might be true?
The last two "pieces" came from the $\equiv(\neg p \vee q)$
vacuous proof lines...maybe the " \neg "
came from there? Maybe that
simplifies down to $\neg p$

