

De	e l	M	org	an's	Laws			
					Example: ¬($(p \land q) \equiv$	$\exists \neg p \lor \neg q$	
	p	q	−p	−q	$\neg p \lor \neg q$	p∧q	¬(p ∧ q)	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
	Т	Т	F	F	F	Т	F	Т
	Т	F	F	Т	Т	F	Т	Т
	F	Т	Т	F	Т	F	Т	Т
	F	F	Т	Т	Т	F	Т	Т
	F	F	Т	T	T	F	Т	T

Law of Implication

Implications are hard.

AND/OR/NOT make more intuitive sense to me... can we rewrite implications using just ANDs ORs and NOTs?

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

One approach: think "when is this implication false?" then negate it (you might want one of DeMorgan's Laws!

Our First Proof

 $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \equiv$

None of the rules look like this

Practice of Proof-Writing: **Big Picture**...WHY do we think this might be true?

The last two "pieces" came from the $\equiv (\neg p \lor q)$ vacuous proof lines...maybe the " $\neg p$ " came from there? Maybe that simplifies down to $\neg p$