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Warm-Up - Translations
Translate the following sentences into logical notation if the English statement is given or to an English 
statement if the logical statement is given, taking into account the domain restriction. Let the domain of 
discourse be students and courses. Use predicates Student, Course, CseCourse to do the domain 
restriction. You can use Taking(x, y) which is true if and only if x is taking y. You can also use 
RobbieTeaches(x) if and only if Robbie teaches x and ContainsTheory(x) if and only if x contains theory.

(a) Every student is taking some course.

(b) There is a student that is not taking every cse course.

(c) Some student has taken only one cse course.

(d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)] 

(e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x 
= y)
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Warm-Up - Translations
(a) Every student is taking some course.

(b) There is a student that is not taking every cse course.

(c) Some student has taken only one cse course.

(d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)] 

(e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x 
= y)

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)]) 

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Every course taught by Robbie contains theory.

There is only one cse course that Robbie teaches and that course contains theory. 



Warm-up: Predicate Logic
Express each of these system specifications using predicates, quantifiers, and logical 
connectives. For some of these problems, more than one translation will be 
reasonable depending on your choice of predicates.

(a) Every user has access to an electronic mailbox

(b) The system mailbox can be accessed by everyone in the group if the file system 
is locked.

(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic 
state.

(d) At least one router is functioning normally if the throughput is between 100kbps 
and 500 kbps and the proxy server is not in diagnostic mode.



Warm-up: Predicate Logic Solutions
(a) Every user has access to an electronic mailbox.

(b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be “y is a 
mailbox”, and let Access(x, y) be “x has access to y”. 

∀x (User(x) → (∃y (Mailbox(y) ∧ Access(x, y))))
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(a) Every user has access to an electronic mailbox.

(b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be “y is a 
mailbox”, and let Access(x, y) be “x has access to y”. 

∀x (User(x) → (∃y (Mailbox(y) ∧ Access(x, y))))

Solution 1: Let the domain be people in the group. Let CanAccessSM(x) be “x has access to the 
system mailbox”. Let p be the proposition “the file system is locked.” 

p → ∀x CanAccessSM(x). 

Solution2: Let the domain be people and mailboxes and use Access(x, y) as defined in the 
solution to part (a), and then also add InGroup(x) for “x is in the group”, and let 
SystemMailBox be the name for the system mailbox. 

FileSystemLocked → ∀x (InGroup(x) → Access(x, SystemMailBox)).



Warm-up: Predicate Logic Solutions
(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.

(d) At least one router is functioning normally if the throughput is between 100kbps and 500 
kbps and the proxy server is not in diagnostic mode.

Let the domain be all applications. Let Firewall(x) be “x is the firewall”, and let ProxyServer(x) 
be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. 

∀x ∀y ((Firewall(x) ∧ Diagnostic(x)) → (ProxyServer(y) → Diagnostic(y))



Warm-up: Predicate Logic Solutions
(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.

(d) At least one router is functioning normally if the throughput is between 100kbps and 500 
kbps and the proxy server is not in diagnostic mode.

Let the domain be all applications. Let Firewall(x) be “x is the firewall”, and let ProxyServer(x) 
be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. 

∀x ∀y ((Firewall(x) ∧ Diagnostic(x)) → (ProxyServer(y) → Diagnostic(y))

Let the domain be all applications and routers. Let Router(x) be “x is a router”, and let 
ProxyServer(x) be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. Let p 
be “the throughput is between 100kbps and 500 kbps”. Let Functioning(y) be “y is functioning 
normally”.

p ∧ ∀x (¬ ProxyServer(x) ∨ ¬ Diagnostic(x))) → ∃y (Router(y) ∧ Functioning(y))



Practice Final: 1. Regularly Irregular

Let Σ = {0, 1}. Prove that the language L = {x ∈ Σ∗ : #0(x) < #1(x)} is irregular.
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Let Σ = {0, 1}. Prove that the language L = {x ∈ Σ∗ : #0(x) < #1(x)} is irregular.

Suppose, for the sake of contradiction, that L = {x ∈ Σ∗ : #0(x) < #1(x)} is regular. Then there is a 
DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same 
state when read by 𝑀. [TODO].

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 𝑞 
in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only one of 
an accept or reject state, 𝑀 does not actually recognize L. Thatʼs a contradiction! 

Therefore, L is an irregular language.
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Practice Final: 2. Recurrences, Recurrences
Define

Prove that T(n) ≤ n3 for n ≥ 3



Practice Final: 2. Recurrences, Recurrences Solution
Let P(n) be “T(n) ≤ n3” for  n ≥ 3. We prove P(n) by strong induction on n.
Base Cases. 

Induction Hypothesis. 
Induction Step.

Conclusion. 
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Let P(n) be “T(n) ≤ n3” for  n ≥ 3. We prove P(n) by strong induction on n.
Base Cases. When n = 3:
When n = 4:
When n = 5:
Induction Hypothesis. Suppose P(3) ∧ P(4) ∧ · · · ∧ P(k) for some k ≥ 5.
Induction Step.

Conclusion. 
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Practice Final: 2. Recurrences, Recurrences Solution
Let P(n) be “T(n) ≤ n3” for  n ≥ 3. We prove P(n) by strong induction on n.
Base Cases. When n = 3:
When n = 4:
When n = 5:
Induction Hypothesis. Suppose P(3) ∧ P(4) ∧ · · · ∧ P(k) for some k ≥ 5.
Induction Step.

Conclusion. Therefore, P(n) holds for all n ≥ 3 by the principle of induction. 



Practice Final: 3. All The Machines!
Let Σ = {0, 1, 2}. Consider L = {w ∈ Σ∗ : Every 1 in the string has at least one 0 
before and after it, and the 0s need not be directly adjacent to the 1}. 

(a) Give a regular expression that represents L.

(b) Give a DFA that recognizes L.

(c) Give a CFG that generates L.



Practice Final: 3. All The Machines! Solution
(b) Give a DFA that recognizes L.
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(a) Give a regular expression that represents L.

(c) Give a CFG that generates L.

(0 ∪ 2)∗ (0(0 ∪ 1 ∪ 2)∗0)∗ (0 ∪ 2)∗ 



Practice Final: 3. All The Machines! Solution
(a) Give a regular expression that represents L.

(c) Give a CFG that generates L.

(0 ∪ 2)∗ (0(0 ∪ 1 ∪ 2)∗0)∗ (0 ∪ 2)∗ 

S → 0S | 2S | S2 | 0T0 |  ε
T → 0T | 1T | 2T | ε



Practice Final: 4. Structural CFGs

Consider the following CFG: S → ε | SS | S1 | S01. Another way of writing the 
recursive definition of this set, Q, is as follows: 

● ε ∈ Q
● If S ∈ Q, then S1 ∈ Q and S01 ∈ Q
● If S, T ∈ Q, then ST ∈ Q. 

Prove, by structural induction that if w ∈ Q, then w has at least as many 1ʼs 
as 0ʼs



Practice Final: 4. Structural CFGs

We go by structural induction on w. Let P (w) be “#0(w) ≤ #1(w)” for w ∈ Σ∗.

Base Case. When w = ε, note that #0(w) = 0 = #1(w). So, the claim is true.



Practice Final: 4. Structural CFGs

We go by structural induction on w. Let P (w) be “#0(w) ≤ #1(w)” for w ∈ Σ∗.

Base Case. When w = ε, note that #0(w) = 0 = #1(w). So, the claim is true.

Induction Hypothesis. Suppose P (w), P (v) are true for some w, v generated by the grammar.

Induction Step 1. Note that #0(w1) = #0(w) ≤ #1(w) + 1 = #1(w1) by IH, and #0(w01) = #0(w) + 1 ≤
#1(w) + 1 = #1(w01) by IH.

Induction Step 2. Note that #0(wv) = #0(w) + #0(v) ≤ #1(w) + #1(v) by IH.

Since the claim is true for all recursive rules, the claim is true for all strings generated by the 
grammar.



Practice Final: 5. Tralse!
For each of the following answer True or False and give a short explanation of your 
answer. 

(a) Any subset of a regular language is also regular.

(b) The set of programs that loop forever on at least one input is decidable.

(c) If ℝ ⊆ A for some set A, then A is uncountable.

(d) If the domain of discourse is people, the logical statement 
∃x (P(x) → ∀y (x ≠ y → ¬P(y)) 
can be correctly translated as “There exists a unique person who has property P”.

(e) ∃x (∀y P(x, y)) → ∀y (∃x P(x, y)) is true regardless of what predicate P is.



Practice Final: 5. Tralse! Solution
(a) Any subset of a regular language is also regular.

Take an irregular language, say, {0n1n: n ≥ 0}.

Is it a part of some regular language?  {0*1*}



Practice Final: 5. Tralse! Solution
(b) The set of programs that loop forever on at least one input is decidable.

If this problem is decidable, then I can use its decider to decide the halting problem!

halts(P, I):
Let Q(input) = “ignore input and run P on I”.
Return whether Q halts on at least one input.



Practice Final: 5. Tralse! Solution
(c) If ℝ ⊆ A for some set A, then A is uncountable.

If A were countable, then we would have the following line of reasoning:

1. Thereʼs a surjection (onto relation) from N to A.
2. Thereʼs a surjection (onto relation) from A to R.
3. Combining the two, thereʼs a surjection (onto relation) from N to R.

🤯



Practice Final: 5. Tralse! Solution
(d) If the domain of discourse is people, the logical statement 

∃x (P(x) → ∀y (x ≠ y → ¬P(y)) 
can be correctly translated as “There exists a unique person who has property P”.



Practice Final: 5. Tralse! Solution
(e) ∃x (∀y P(x, y)) → ∀y (∃x P(x, y)) is true regardless of what predicate P is.

Someone is friends with everyone. Everyone is friends with someone.



Practice Final: BONUS Set Proof
A = {x : x ≡ k (mod 4)}, B = {x : x = 4r+k for some integer r}. Prove A = B for all integer k
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Practice Final: 6. Relationships!
(b) Let S = {(X, Y ) : X, Y ∈ 𝒫(ℕ) ∧ X ⊆ Y }. 

Recall that R is antisymmetric iff ((a, b) ∈ R ∧ a ≠ b) → (b, a) ∉ R. 
Prove that S is antisymmetric.



(b) Let S = {(X, Y ) : X, Y ∈ 𝒫(ℕ) ∧ X ⊆ Y }. 
Recall that R is antisymmetric iff ((a, b) ∈ R ∧ a ≠ b) → (b, a) ∉ R. 
Prove that S is antisymmetric.

Practice Final: 6. Relationships! Solution



Practice Final: 8. Modern DFAs

Let Σ = {0, 1, 2}. 

Construct a DFA that recognizes exactly strings with a 0 in all positions i where 
i%3 = 0.



Practice Final: 8. Modern DFAs Solution
Let Σ = {0, 1, 2}. Construct a DFA that recognizes exactly strings with a 0 in all positions i where 
i%3 = 0.



Practice Final: 7. Construction Paper!

Convert the following NFA into a DFA using the algorithm from lecture.



Practice Final: 7. Construction Paper! Solution
Convert the following NFA into a DFA using the algorithm from lecture.



Thatʼs All, Folks!
Any questions?


