Section 09 (Part B): Solutions

1. Reflexivity Proof

Let R and S be relations on a set A. Consider the following claim:
Given that R and S are reflexive, it follows that $R \cup S$ is reflexive.
(a) What does " $R \cup S$ is reflexive" become if we unroll the definition of reflexive? Solution:

$$
\forall x((x, x) \in R \cup S)
$$

(b) Write a formal proof that the claim from (a) holds. Solution:

1.	$\forall x((x, x) \in R)$	Given
2.	$\forall x((x, x) \in S)$	Given
3.	Let x be an arbitrary object.	
4.	$(x, x) \in R$	Elim $\forall: 1$
5.	$((x, x) \in R) \vee((x, x) \in S)$	Intro $\vee: 4$
6.	$((x, x) \in R \cup S)$	Def of Union: 5
7.	$\forall x((x, x) \in R \cup S)$	Intro $\forall: 3,6$

(c) Translate the formal proof into an English proof of the original claim. Solution:

Let x be arbitrary. Since we were given that R is reflexive, we know that $(x, x) \in R$. Then, it must be the case that $(x, x) \in R$ or $(x, x) \in S$. By definition of union, we know then that $(x, x) \in R \cup S$. Since x was arbitrary, we have shown that $R \cup S$ is reflexive.

2. Relations

Suppose that R is reflexive. Prove that $R \subseteq R^{2}$, with a formal proof and then an English proof. You may use the following definition:

$$
R^{2}:=R \circ R
$$

Solution:

Formal proof:

1. $\forall x((x, x) \in R)$

Given
2. Let x and y be arbitrary.
3.1. $(x, y) \in R \quad$ Assumption
3.2. $(y, y) \in R$
Elim \forall : 1
3.3. $(x, y) \in R \wedge(y, y) \in R \quad$ Intro $\wedge: 3.1,3.2$
3.4. $\exists z((x, z) \in R \wedge(z, y) \in R) \quad$ Intro $\exists: 3.3$
3.5. $(x, y) \in R \circ R \quad$ Def of Composition: 3.4
3.6. $(x, y) \in R^{2} \quad$ Def of $R^{2}: 3.5$
3. $(x, y) \in R \rightarrow(x, y) \in R^{2}$

Direct Proof
4. $\forall x \forall y\left((x, y) \in R \rightarrow(x, y) \in R^{2}\right)$

Intro $\forall: 2,3$
5. $R \subseteq R^{2}$

Def of $\subseteq: 4$

English proof: Let x and y be arbitrary. Suppose $(x, y) \in R$. Since we were given that R is reflexive, we know $(y, y) \in R$ as well. Since there is a z such that $(x, z) \in R$ and $(z, y) \in R$, it follows that $(x, y) \in R^{2}$. Thus, since x and y were arbitrary, by definition of $\operatorname{subset} R \subseteq R^{2}$.

3. DFAs, Stage 1

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1,2,3\}$.
(a) All binary strings.

Solution:

q_{0} : binary strings
q_{1} : strings that contain a character which is not 0 or 1.
(b) All strings whose digits sum to an even number.

Solution:

(c) All strings whose digits sum to an odd number.

Solution:

4. DFAs, Stage 2

Construct DFAs to recognize each of the following languages. Let $\Sigma=\{0,1\}$.
(a) All strings which do not contain the substring 101.

Solution:

q_{3} : string that contain 101.
q_{2} : strings that don't contain 101 and end in 10.
q_{1} : strings that don't contain 101 and end in 1.
$q_{0}: \varepsilon, 0$, strings that don't contain 101 and end in 00 .
(b) All strings containing at least two 0's and at most one 1.

Solution:

(c) All strings containing an even number of 1's and an odd number of 0's and not containing the substring 10. Solution:

5. NFAs

(a) What language does the following NFA accept?

Solution:

All strings of only 0 's and 1 's not containing more than one 1 .
(b) Create an NFA for the language "all binary strings that have a 1 as one of the last three digits".

Solution:

The following is one such NFA:

6. DFA Minimization

(a) Minimize the following DFA:

Solution:

Step 1: q_{0}, q_{2} are final states and the rest are not final. So, we start with the initial partition with the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$ and group 2 is $\left\{q_{1}, q_{3}, q_{4}\right\}$.

Step 2: q_{1} is sending a to group 1 while q_{3}, q_{4} are sending a to group 2. So, we divide group 2. We get the following groups: group 1 is $\left\{q_{0}, q_{2}\right\}$, group 3 is $\left\{q_{1}\right\}$ and group 4 is $\left\{q_{3}, q_{4}\right\}$.
Step 3: q_{0} is sending a to group 3 and q_{2} is sending a to group 4. So, we divide group 1 . We will have the following groups: group 3 is $\left\{q_{1}\right\}$, group 4 is $\left\{q_{3}, q_{4}\right\}$, group 5 is $\left\{q_{0}\right\}$ and group 6 is $\left\{q_{2}\right\}$.
The minimized DFA is the following:

(b) Minimize your solution to problem 1.

Solution:

Step 1: $\left\{q_{0}, q_{1}\right\}$ and $\left\{q_{2}\right\}$ are final states and the rest are not final. So, we start with the initial partition with the following groups: group 1 is $\left\{\left\{q_{0}, q_{1}\right\},\left\{q_{2}\right\}\right\}$ and group 2 is $\left\{\left\{q_{3}\right\}, \emptyset\right\}$.
Step 2: $\left\{q_{0}, q_{1}\right\}$ sends 1 to group 1 while $\left\{q_{2}\right\}$ sends 1 to group 2. So, we divide group 1 . We get the following groups: group 1 is now just $\left\{\left\{q_{0}, q_{1}\right\}\right\}$, group 2 is $\left\{\left\{q_{3}\right\}, \emptyset\right\}$, and the new group 3 is $\left\{\left\{q_{2}\right\}\right\}$.

Collapsing group 2 into the single state \emptyset gives us this minimized DFA:

