Section 09 (Part A): Solutions

1. CFGs

(a) All binary strings that end in 00 .

Solution:

$$
\mathbf{S} \rightarrow 0 \mathbf{S}|1 \mathbf{S}| 00
$$

(b) All binary strings that contain at least three 1's.

Solution:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{T T T} \\
& \mathbf{T} \rightarrow 0 \mathbf{T}|\mathbf{T} 0| 1 \mathbf{T} \mid 1
\end{aligned}
$$

(c) All strings over $\{0,1,2\}$ with the same number of 1 s and 0 s and exactly one 2.

Hint: Try modifying the grammar from lecture for binary strings with the same number of 1 s and 0 s . (You may need to introduce new variables in the process.)

Solution:

We can do this by slightly modifying the grammar from lecture.

$$
\begin{aligned}
& \mathbf{S} \rightarrow 2 \mathbf{T}|\mathbf{T} 2| \mathbf{S T}|\mathbf{T S}| 0 \mathbf{S} 1 \mid 1 \mathbf{S} 0 \\
& \mathbf{T} \rightarrow \mathbf{T} \mathbf{T}|0 \mathbf{T} 1| 1 \mathbf{T} 0 \mid \varepsilon
\end{aligned}
$$

\mathbf{T} is the grammar from lecture. It generates all binary strings with the same number of 1 s and 0 s .
\mathbf{S} matches a 2 at the beginning or end. The rest of the string must then match \mathbf{T} since it cannot have another 2. If neither the first nor last character is a 2 , then it falls into the usual cases for matching 0s and 1 s , so we can mostly use the same rules as \mathbf{T}. The main change is that $\mathbf{S S}$ becomes $\mathbf{S T} \mid \mathbf{T S}$ to ensure that exactly one of the two parts contains a 2 . The other change is that there is no ε since a 2 must appear somewhere.

2. Good, Good, Good, Good Relations

In each part of this problem, we define a relation R on this set. For each one, state whether R is or is not reflexive, symmetric, antisymmetric, and/or transitive. If a relation does not have a property, state a counterexample.
(a) Consider the relation $R=\{(x, y): x=y+1\}$ on \mathbb{N}. Solution:
not reflexive (counterexample: $(1,1) \notin R$), not symmetric (counterexample: $(2,1) \in R$ but $(1,2) \notin R)$, antisymmetric, not transitive (counterexample: $(3,2) \in R$ and $(2,1) \in R$, but $(3,1) \notin R$
(b) Consider the relation $R=\left\{(x, y): x^{2}=y^{2}\right\}$ on \mathbb{R}.

Solution:

reflexive, symmetric, not antisymmetric (counterexample: $(-2,2) \in R$ and $(2,-2) \in R$ but $2 \neq-2$), transitive

