
Section 08: Structural Induction, Recursive Sets and RegEx

1. Strong Induction
Consider the function a(n) defined for n ≥ 1 recursively as follows.

a(1) = 1

a(2) = 3

a(n) = 2a(n− 1)− a(n− 2) for n ≥ 3

Use strong induction to prove that a(n) = 2n− 1 for all n ≥ 1.

2. Structural Induction
(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c,X) is a string.

Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

Now, consider the following recursive definition:

double("") = ""
double(append(c,X)) = append(c, append(c, double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T ) ≥ size(T )/2 + 1/2 for all Trees T .

(c) Prove the previous claim using strong induction. Define P (n) as “all trees T of size n satisfy leaves(T ) ≥
size(T )/2 + 1/2”. You may use the following facts:

• For any tree T we have size(T ) ≥ 1.

1



• For any tree T , size(T ) = 1 if and only if T = •.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k + 1.

3. Reversing a Binary Tree
Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L,R) is a Tree.

The sum function returns the sum of all elements in a Tree.

sum(Nil) = 0

sum(Tree(x, L,R)) = x+ sum(L) + sum(R)

The following recursively defined function produces the mirror image of a Tree.

reverse(Nil) = Nil
reverse(Tree(x, L,R)) = Tree(x, reverse(R), reverse(L))

Show that, for all Trees T that
sum(T ) = sum(reverse(T ))

4. Recursively Defined Sets of Strings
For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify
that your solution is correct.

(a) Binary strings of even length.

(b) Binary strings not containing 10.

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

(d) Binary strings containing at most two 0s and at most two 1s.

5. Regular Expressions
(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

2


	1 Strong Induction
	2 Structural Induction
	3 Reversing a Binary Tree
	4 Recursively Defined Sets of Strings
	5 Regular Expressions

