1. **Strong Induction**

Consider the function $a(n)$ defined for $n \geq 1$ recursively as follows.

\[
a(1) = 1 \\
a(2) = 3 \\
a(n) = 2a(n-1) - a(n-2) \text{ for } n \geq 3
\]

Use strong induction to prove that $a(n) = 2^n - 1$ for all $n \geq 1$.

2. **Structural Induction**

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then $\text{append}(c, X)$ is a string.

Recall the following recursive definition of the function len:

\[
\begin{align*}
\text{len}("") & = 0 \\
\text{len}(\text{append}(c, X)) & = 1 + \text{len}(X)
\end{align*}
\]

Now, consider the following recursive definition:

\[
\begin{align*}
\text{double}("") & = "" \\
\text{double}(\text{append}(c, X)) & = \text{append}(c, \text{append}(c, \text{double}(X))).
\end{align*}
\]

Prove that for any string X, $\text{len}(\text{double}(X)) = 2\text{len}(X)$.

(b) Consider the following definition of a (binary) **Tree**:

Basis Step: • is a **Tree**.

Recursive Step: If L is a **Tree** and R is a **Tree** then $\text{Tree}(\bullet, L, R)$ is a **Tree**.

The function leaves returns the number of leaves of a **Tree**. It is defined as follows:

\[
\begin{align*}
\text{leaves}(\bullet) & = 1 \\
\text{leaves}(\text{Tree}(\bullet, L, R)) & = \text{leaves}(L) + \text{leaves}(R)
\end{align*}
\]

Also, recall the definition of size on trees:

\[
\begin{align*}
\text{size}(\bullet) & = 1 \\
\text{size}(\text{Tree}(\bullet, L, R)) & = 1 + \text{size}(L) + \text{size}(R)
\end{align*}
\]

Prove that $\text{leaves}(T) \geq \text{size}(T)/2 + 1/2$ for all **Trees** T.

(c) Prove the previous claim using strong induction. Define $P(n)$ as “all trees T of size n satisfy $\text{leaves}(T) \geq \text{size}(T)/2 + 1/2$”. You may use the following facts:

- For any tree T we have $\text{size}(T) \geq 1$.

• For any tree T, $size(T) = 1$ if and only if $T = \cdot$.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size $k + 1$.

3. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\text{Tree}(x, L, R)$ is a Tree.

The sum function returns the sum of all elements in a Tree.

$$
\begin{align*}
\text{sum}(\text{Nil}) &= 0 \\
\text{sum}(\text{Tree}(x, L, R)) &= x + \text{sum}(L) + \text{sum}(R)
\end{align*}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{align*}
\text{reverse}(\text{Nil}) &= \text{Nil} \\
\text{reverse}(\text{Tree}(x, L, R)) &= \text{Tree}(x, \text{reverse}(R), \text{reverse}(L))
\end{align*}
$$

Show that, for all Trees T that

$$
\text{sum}(T) = \text{sum}(\text{reverse}(T))
$$

4. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.

(a) Binary strings of even length.

(b) Binary strings not containing 10.

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

(d) Binary strings containing at most two 0s and at most two 1s.

5. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring “000”.

2