Section 08: Structural Induction, Recursive Sets and RegEx

1. Strong Induction

Consider the function a(n) defined for $n \ge 1$ recursively as follows.

$$a(1) = 1$$

 $a(2) = 3$
 $a(n) = 2a(n-1) - a(n-2) \text{ for } n > 3$

Use strong induction to prove that a(n) = 2n - 1 for all $n \ge 1$.

2. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c, X) is a string.

Recall the following recursive definition of the function len:

$$\begin{split} & \mathsf{len}(\texttt{""}) & = 0 \\ & \mathsf{len}(\mathsf{append}(c,X)) & = 1 + \mathsf{len}(X) \end{split}$$

Now, consider the following recursive definition:

$$\begin{array}{lll} \mathsf{double}("") & = "" \\ \mathsf{double}(\mathsf{append}(c,X)) & = \mathsf{append}(c,\mathsf{append}(c,\mathsf{double}(X))). \end{array}$$

Prove that for any string X, len(double(X)) = 2len(X).

(b) Consider the following definition of a (binary) **Tree**:

Basis Step: \bullet is a Tree.

Recursive Step: If L is a Tree and R is a Tree then $Tree(\bullet, L, R)$ is a Tree.

The function leaves returns the number of leaves of a **Tree**. It is defined as follows:

$$\begin{aligned} &\mathsf{leaves}(\bullet) & = 1 \\ &\mathsf{leaves}(\mathsf{Tree}(\bullet, L, R)) & = \mathsf{leaves}(L) + \mathsf{leaves}(R) \end{aligned}$$

Also, recall the definition of size on trees:

$$\begin{aligned} & \mathsf{size}(\bullet) & = 1 \\ & \mathsf{size}(\mathsf{Tree}(\bullet, L, R)) & = 1 + \mathsf{size}(L) + \mathsf{size}(R) \end{aligned}$$

Prove that $leaves(T) \ge size(T)/2 + 1/2$ for all Trees T.

- (c) Prove the previous claim using strong induction. Define P(n) as "all trees T of size n satisfy leaves $(T) \ge \text{size}(T)/2 + 1/2$ ". You may use the following facts:
 - For any tree T we have $size(T) \ge 1$.

• For any tree T, size(T) = 1 if and only if $T = \bullet$.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k+1.

3. Reversing a Binary Tree

Consider the following definition of a (binary) **Tree**.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L, R) is a Tree.

The sum function returns the sum of all elements in a Tree.

$$\begin{aligned} & \operatorname{sum}(\operatorname{Nil}) &= 0 \\ & \operatorname{sum}(\operatorname{Tree}(x,L,R)) &= x + \operatorname{sum}(L) + \operatorname{sum}(R) \end{aligned}$$

The following recursively defined function produces the mirror image of a Tree.

$$\begin{split} & \mathsf{reverse}(\mathtt{Nil}) &= \mathtt{Nil} \\ & \mathsf{reverse}(\mathtt{Tree}(x, L, R)) &= \mathtt{Tree}(x, \mathtt{reverse}(R), \mathtt{reverse}(L)) \end{split}$$

Show that, for all **Trees** T that

$$sum(T) = sum(reverse(T))$$

4. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.

- (a) Binary strings of even length.
- (b) Binary strings not containing 10.
- (c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.
- (d) Binary strings containing at most two 0s and at most two 1s.

5. Regular Expressions

- (a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).
- (b) Write a regular expression that matches all base-3 numbers that are divisible by 3.
- (c) Write a regular expression that matches all binary strings that contain the substring "111", but not the substring "000".