Section 08: Solutions

1. Strong Induction

Consider the function $a(n)$ defined for $n \geq 1$ recursively as follows.

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geq 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geq 1$.

Solution:

Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geq 1$ by strong induction.
Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.

Inductive Hypothesis:

Suppose that $P(j)$ is true for all integers $1 \leq j \leq k$ for some arbitrary $k \geq 2$.
Inductive Step:
We will show $P(k+1)$ holds.

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) & & \text { [Definition of } a] \\
& =2(2 k-1)-(2(k-1)-1) & & {[\text { Inductive Hypothesis] }} \\
& =2 k+1 & & \text { [Algebra] } \\
& =2(k+1)-1 & & \text { [Algebra] }
\end{aligned}
$$

So, $P(k+1)$ holds.

Conclusion:

Therefore, $P(n)$ holds for all integers $n \geq 1$ by principle of strong induction.

2. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: " " is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\text { len }(" ") & =0 \\
\text { len }(\operatorname{append}(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \text { append }(c, \text { double }(X))) .
\end{array}
$$

Prove that for any string X, len $($ double $(X))=2 \operatorname{len}(X)$.

Solution:

For a string X, let $\mathrm{P}(X)$ be "len $($ double $(X))=2 \operatorname{len}(X)$ ". We prove $\mathrm{P}(X)$ for all strings X by structural induction on X.

Base Case ($X=$ " " $)$: By definition, len(double("")) $=\operatorname{len}(" ")=0=2 \cdot 0=2 \operatorname{len}(" ")$, so $\mathrm{P}(" \mathrm{"})$ holds
Inductive Hypothesis: Suppose $\mathrm{P}(X)$ holds for some arbitrary string X.
Inductive Step: Goal: Show that $\mathrm{P}($ append $(c, X))$ holds for any character c.

$$
\begin{aligned}
\operatorname{len}(\operatorname{double}(\operatorname{append}(c, X))) & =\operatorname{len}(\operatorname{append}(c, \text { append }(c, \text { double }(X)))) & & {[\text { By Definition of double] }} \\
& =1+\operatorname{len}(\operatorname{append}(c, \operatorname{double}(X))) & & {[\text { By Definition of len }] } \\
& =1+1+\operatorname{len}(\operatorname{double}(X)) & & {[\text { By Definition of len }] } \\
& =2+2 \operatorname{len}(X) & & {[\text { By IH }] } \\
& =2(1+\operatorname{len}(X)) & & {[\text { Algebra }] } \\
& =2(\operatorname{len}(\operatorname{append}(c, X))) & & \text { [By Definition of len] }
\end{aligned}
$$

This proves $\mathrm{P}(\operatorname{append}(c, X))$.
Conclusion: $\mathrm{P}(X)$ holds for all strings X by structural induction.
(b) Consider the following definition of a (binary) Tree:

Basis Step: - is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\operatorname{leaves}(L)+\operatorname{leaves}(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ for all Trees T.

Solution:

For a tree T, let P be leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$. We prove P for all trees T by structural induction on T.

Base Case ($\mathbf{T}=\bullet$): By definition of leaves (\bullet), leaves $(\bullet)=1$ and $\operatorname{size}(\bullet)=1$. So, leaves $(\bullet)=1 \geq$ $1 / 2+1 / 2=\operatorname{size}(\bullet) / 2+1 / 2$, so $\mathrm{P}(\bullet)$ holds.
Inductive Hypothesis: Suppose $\mathrm{P}(L)$ and $\mathrm{P}(R)$ hold for some arbitrary trees L, R.

Inductive Step: Goal: Show that $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$ holds.

$$
\begin{aligned}
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\text { leaves }(R) & & \text { [By Definition of leaves] } \\
& \geq(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & & {[\text { By IH }] } \\
& =(1 / 2+\operatorname{size}(L) / 2+\operatorname{size}(R) / 2)+1 / 2 & & {[\text { By Algebra }] } \\
& =\frac{1+\operatorname{size}(L)+\operatorname{size}(R)}{2}+1 / 2 & & {[\text { By Algebra }] } \\
& =\operatorname{size}(T) / 2+1 / 2 & & {[\text { By Definition of size }] }
\end{aligned}
$$

This proves $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$.
Conclusion: Thus, $\mathrm{P}(T)$ holds for all trees T by structural induction.
(c) Prove the previous claim using strong induction. Define $P(n)$ as "all trees T of size n satisfy leaves $(T) \geq$ $\operatorname{size}(T) / 2+1 / 2$ ". You may use the following facts:

- For any tree T we have $\operatorname{size}(T) \geq 1$.
- For any tree $T, \operatorname{size}(T)=1$ if and only if $T=\bullet$.

If we wanted to prove these claims, we could do so by structural induction.
Note, in the inductive step you should start by letting T be an arbitrary tree of size $k+1$.

Solution:

Let $P(n)$ be "all trees T of size n satisfy leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ ". We show $P(n)$ for all integers $n \geq 1$ by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1 . The only tree with size 1 is \bullet, so $T=\bullet$. By definition, leaves $(T)=\operatorname{leaves}(\bullet)=1$ and thus size $(T)=1=1 / 2+1 / 2=\operatorname{size}(T) / 2+1 / 2$. This shows the base case holds.

Inductive Hypothesis: Suppose that $P(j)$ holds for all integers $j=1,2, \ldots, k$ for some arbitrary integer $k \geq 1$.
Inductive Step: Let T be an arbitrary tree of size $k+1$. Since $k+1>1$, we must have $T \neq \bullet$. It follows from the definition of a tree that $T=\operatorname{Tree}(\bullet, L, R)$ for some trees L and R. By definition, we have $\operatorname{size}(T)=1+\operatorname{size}(L)+\operatorname{size}(R)$. Since sizes are non-negative, this equation shows size $(T)>\operatorname{size}(L)$ and $\operatorname{size}(T)>\operatorname{size}(R)$ meaning we can apply the inductive hypothesis. This says that leaves $(L) \geq$ $\operatorname{size}(L) / 2+1 / 2$ and leaves $(R) \geq \operatorname{size}(R) / 2+1 / 2$.

We have,

$$
\begin{aligned}
\operatorname{leaves}(T) & =\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & & \\
& =\text { leaves }(L)+\operatorname{leaves}(R) & & {[\text { By Definition of leaves] }} \\
& \geq(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & & {[\text { By IH }] } \\
& =(1 / 2+\operatorname{size}(L) / 2+\operatorname{size}(R) / 2)+1 / 2 & & {[\text { By Algebra }] } \\
& =\frac{1+\operatorname{size}(L)+\operatorname{size}(R)}{2}+1 / 2 & & {[\text { By Algebra] }} \\
& =\operatorname{size}(T) / 2+1 / 2 & & {[\text { By Definition of size] }}
\end{aligned}
$$

This shows $P(k+1)$.
Conclusion: $P(n)$ holds for all integers $n \geq 1$ by the principle of strong induction.
Note, this proves the claim for all trees because every tree T has some size $s \geq 1$. Then $P(s)$ says that all trees of size s satisfy the claim, including T.

3. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.
Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\operatorname{Tree}(x, L, R)$ is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\operatorname{reverse}(\mathrm{Nil}) & =\operatorname{Nil} \\
\text { reverse }(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \operatorname{reverse}(R), \text { reverse }(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

Solution:

For a Tree T, let $P(T)$ be "sum $(T)=\operatorname{sum}($ reverse $(T))$ ". We show $P(T)$ for all Trees T by structural induction.
Base Case: By definition we have reverse $(\mathrm{Nil})=\mathrm{Nil}$. Applying sum to both sides we get sum $(\mathrm{Nil})=$ sum(reverse (Nil)), which is exactly $P(\mathrm{Nil})$, so the base case holds.

Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for some arbitrary Trees L and R.
Inductive Step: Let x be an arbitrary integer. Goal: Show $P(\operatorname{Tree}(x, L, R))$ holds.
We have,

$$
\begin{aligned}
\operatorname{sum}(\operatorname{reverse}(\operatorname{Tree}(x, L, R))) & =\operatorname{sum}(\operatorname{Tree}(x, \operatorname{reverse}(R), \operatorname{reverse}(L))) & & \text { [Definition of reverse] } \\
& =x+\operatorname{sum}(\operatorname{reverse}(R))+\operatorname{sum}(\operatorname{reverse}(L)) & & \text { [Definition of sum }] \\
& =x+\operatorname{sum}(R)+\operatorname{sum}(L) & & \text { [Inductive Hypothesis] } \\
& =x+\operatorname{sum}(L)+\operatorname{sum}(R) & & \text { [Commutativity] } \\
& =\operatorname{sum}(\operatorname{Tree}(x, L, R)) & & \text { [Definition of sum }]
\end{aligned}
$$

This shows $P(\operatorname{Tree}(x, L, R))$.
Conclusion: Therefore, $P(T)$ holds for all Trees T by structural induction.

4. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
(a) Binary strings of even length.

Solution:

Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $x 00, x 01, x 10, x 11 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.
"Brief" Justification: We will show that $x \in S$ iff x has even length (i.e., $|\mathrm{x}|=2 \mathrm{n}$ for some $n \in \mathbb{N}$). (Note: "brief" is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose $x \in S$. If x is the empty string, then it has length 0 , which is even. Otherwise, x is built up from the empty string by repeated application of the recursive step, so it is of the form $x_{1} x_{2} \ldots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$. In that case, we can see that $|\mathrm{x}|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots \cdot+\left|x_{n}\right|=2 \mathrm{n}$, which is even. Now, suppose that x has even length. If it's length is zero, then it is the empty string, which is in S. Otherwise, it has length 2 n for some $n>0$, and we can write x in the form $x_{1} x_{2} \ldots x_{n}$, where each $x_{i} \in\{00,01,10,11\}$ has length 2. Hence, we can see that x can be built up from the empty string by applying the recursive step with x_{1}, then x_{2}, and so on up to x_{n}, which shows that $x \in S$.
(b) Binary strings not containing 10 .

Solution:

If the string does not contain 10 , then the first 1 in the string can only be followed by more 1 s . Hence, it must be of the form $0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$.

Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $0 x \in S$ and $x 1 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 0 s on the left. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as $y=0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$. We can build up the string y from the empty string by applying the rule $x \rightarrow 0 x \mathrm{~m}$ times and then applying the rule $x \rightarrow x 1 \mathrm{n}$ times. This shows that the string y is in S .
(c) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s.

Solution:

These must be of the form $0^{m} 1^{n}$ for some $m, n \in \mathbb{N}$ with $m \leq n$. We can ensure that by pairing up the 0 s with 1 s as they are added:
Basis: $\varepsilon \in S$.
Recursive Step: If $x \in S$, then $0 x 1 \in S$ and $x 1 \in S$.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0s at the front. And since every 0 comes with a 1 , we always have at least as many 1 s as 0 s.

In the other direction, from our discussion above, any string of this form can be written as $x y$, where $x=0^{m} 1^{m}$ and $y=1^{n-m}$, since $n \geq m$. We can build up the string x from the empty string by applying the rule $x \rightarrow 0 x 1 m$ times and then produce the string $x y$ by applying the rule $x \rightarrow x 1 n-m$ times, which shows that the string is in S .
(d) Binary strings containing at most two 0s and at most two 1 s .

Solution:

This is the set of all binary strings of length at most 4 except for these:

$$
000,1000,0100,0010,0001,0000,111,0111,1011,1101,1110,1111
$$

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.

5. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

$$
0 \cup\left((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^{*}\right)
$$

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3 .

Solution:

$$
0 \cup\left((1 \cup 2)(0 \cup 1 \cup 2)^{*} 0\right)
$$

(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".

Solution:

$$
\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon) 111\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon)
$$

