1. Strong Induction

Consider the function a(n) defined for $n \ge 1$ recursively as follows.

$$a(1) = 1$$

$$a(2) = 3$$

$$a(n) = 2a(n-1) - a(n-2)$$
 for $n \ge 3$

Use strong induction to prove that a(n) = 2n - 1 for all $n \ge 1$.

Solution:

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction.

Base Cases (n = 1, n = 2):

$$(n=1)$$

$$a(1) = 1 = 2 \cdot 1 - 1$$

$$(n = 2)$$

$$a(2) = 3 = 2 \cdot 2 - 1$$

So, P(1) and P(2) hold.

Inductive Hypothesis:

Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$.

Inductive Step:

We will show P(k+1) holds.

$$a(k+1) = 2a(k) - a(k-1)$$
 [Definition of a]

$$= 2(2k-1) - (2(k-1)-1)$$
 [Inductive Hypothesis]

$$= 2k+1$$
 [Algebra]

$$= 2(k+1) - 1$$
 [Algebra]

So, P(k+1) holds.

Conclusion:

Therefore, P(n) holds for all integers $n \ge 1$ by principle of strong induction.

2. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c, X) is a string.

Recall the following recursive definition of the function len:

$$len("") = 0$$

 $\mathsf{len}(\mathsf{append}(c,X)) \quad = 1 + \mathsf{len}(X)$

Now, consider the following recursive definition:

$$\begin{aligned} \mathsf{double}("") &= "" \\ \mathsf{double}(\mathsf{append}(c,X)) &= \mathsf{append}(c,\mathsf{append}(c,\mathsf{double}(X))). \end{aligned}$$

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

For a string X, let $\mathsf{P}(X)$ be " $\mathsf{len}(\mathsf{double}(X)) = 2\mathsf{len}(X)$ ". We prove $\mathsf{P}(X)$ for all strings X by structural induction on X.

Base Case (X = ""): By definition, $len(double("")) = len("") = 0 = 2 \cdot 0 = 2len("")$, so P("") holds

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: Goal: Show that P(append(c, X)) holds for any character c.

$$\begin{split} & \mathsf{len}(\mathsf{double}(\mathsf{append}(c,X))) = \mathsf{len}(\mathsf{append}(c,\mathsf{append}(c,\mathsf{double}(X)))) & [\mathsf{By \ Definition \ of \ double}] \\ &= 1 + \mathsf{len}(\mathsf{append}(c,\mathsf{double}(X))) & [\mathsf{By \ Definition \ of \ len}] \\ &= 1 + 1 + \mathsf{len}(\mathsf{double}(X)) & [\mathsf{By \ Definition \ of \ len}] \\ &= 2 + 2\mathsf{len}(X) & [\mathsf{By \ IH}] \\ &= 2(1 + \mathsf{len}(X)) & [\mathsf{Algebra}] \\ &= 2(\mathsf{len}(\mathsf{append}(c,X))) & [\mathsf{By \ Definition \ of \ len}] \end{split}$$

This proves P(append(c, X)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) **Tree**:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then $Tree(\bullet, L, R)$ is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$\begin{aligned} &\mathsf{leaves}(\bullet) & = 1 \\ &\mathsf{leaves}(\mathsf{Tree}(\bullet, L, R)) & = \mathsf{leaves}(L) + \mathsf{leaves}(R) \end{aligned}$$

Also, recall the definition of size on trees:

$$size(\bullet)$$
 = 1
 $size(Tree(\bullet, L, R))$ = 1 + $size(L)$ + $size(R)$

Prove that $leaves(T) \ge size(T)/2 + 1/2$ for all Trees T.

Solution:

For a tree T, let P be $\mathsf{leaves}(T) \ge \mathsf{size}(T)/2 + 1/2$. We prove P for all trees T by structural induction on T.

Base Case (T = •): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So, leaves(•) = 1 $\geq 1/2 + 1/2 = size(•)/2 + 1/2$, so P(•) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L, R.

Inductive Step: Goal: Show that $P(Tree(\bullet, L, R))$ holds.

$$\begin{split} & |\mathsf{leaves}(\mathsf{Tree}(\bullet,L,R)) = \mathsf{leaves}(L) + \mathsf{leaves}(R) & [\mathsf{By Definition of leaves}] \\ & \geq (\mathsf{size}(L)/2 + 1/2) + (\mathsf{size}(R)/2 + 1/2) & [\mathsf{By IH}] \\ & = (1/2 + \mathsf{size}(L)/2 + \mathsf{size}(R)/2) + 1/2 & [\mathsf{By Algebra}] \\ & = \frac{1 + \mathsf{size}(L) + \mathsf{size}(R)}{2} + 1/2 & [\mathsf{By Algebra}] \\ & = \mathsf{size}(T)/2 + 1/2 & [\mathsf{By Definition of size}] \end{split}$$

This proves $P(\mathsf{Tree}(\bullet, L, R))$.

Conclusion: Thus, P(T) holds for all trees T by structural induction.

- (c) Prove the previous claim using strong induction. Define P(n) as "all trees T of size n satisfy leaves $(T) \ge \text{size}(T)/2 + 1/2$ ". You may use the following facts:
 - For any tree T we have $size(T) \ge 1$.
 - For any tree T, size(T) = 1 if and only if $T = \bullet$.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k+1.

Solution:

Let P(n) be "all trees T of size n satisfy leaves $(T) \ge \text{size}(T)/2 + 1/2$ ". We show P(n) for all integers $n \ge 1$ by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is \bullet , so $T = \bullet$. By definition, leaves $(T) = \text{leaves}(\bullet) = 1$ and thus size(T) = 1 = 1/2 + 1/2 = size(T)/2 + 1/2. This shows the base case holds.

Inductive Hypothesis: Suppose that P(j) holds for all integers j = 1, 2, ..., k for some arbitrary integer $k \ge 1$.

Inductive Step: Let T be an arbitrary tree of size k+1. Since k+1>1, we must have $T\neq \bullet$. It follows from the definition of a tree that $T={\tt Tree}(\bullet,L,R)$ for some trees L and R. By definition, we have ${\sf size}(T)=1+{\sf size}(L)+{\sf size}(R)$. Since sizes are non-negative, this equation shows ${\sf size}(T)>{\sf size}(L)$ and ${\sf size}(T)>{\sf size}(R)$ meaning we can apply the inductive hypothesis. This says that ${\sf leaves}(L)\geq {\sf size}(L)/2+1/2$ and ${\sf leaves}(R)\geq {\sf size}(R)/2+1/2$.

We have,

$$\begin{split} & |\mathsf{leaves}(T) = \mathsf{leaves}(\mathsf{Tree}(\bullet, L, R)) \\ &= \mathsf{leaves}(L) + \mathsf{leaves}(R) & [\mathsf{By Definition of leaves}] \\ &\geq (\mathsf{size}(L)/2 + 1/2) + (\mathsf{size}(R)/2 + 1/2) & [\mathsf{By IH}] \\ &= (1/2 + \mathsf{size}(L)/2 + \mathsf{size}(R)/2) + 1/2 & [\mathsf{By Algebra}] \\ &= \frac{1 + \mathsf{size}(L) + \mathsf{size}(R)}{2} + 1/2 & [\mathsf{By Algebra}] \\ &= \mathsf{size}(T)/2 + 1/2 & [\mathsf{By Definition of size}] \end{split}$$

This shows P(k+1).

Conclusion: P(n) holds for all integers $n \ge 1$ by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size $s \ge 1$. Then P(s) says that all trees of size s satisfy the claim, including T.

3. Reversing a Binary Tree

Consider the following definition of a (binary) **Tree**.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L, R) is a Tree.

The sum function returns the sum of all elements in a Tree.

$$\begin{aligned} & \operatorname{sum}(\operatorname{Nil}) &= 0 \\ & \operatorname{sum}(\operatorname{Tree}(x,L,R)) &= x + \operatorname{sum}(L) + \operatorname{sum}(R) \end{aligned}$$

The following recursively defined function produces the mirror image of a **Tree**.

$$\begin{split} \operatorname{reverse}(\operatorname{Nil}) &= \operatorname{Nil} \\ \operatorname{reverse}(\operatorname{Tree}(x,L,R)) &= \operatorname{Tree}(x,\operatorname{reverse}(R),\operatorname{reverse}(L)) \end{split}$$

Show that, for all **Trees** T that

$$sum(T) = sum(reverse(T))$$

Solution:

For a **Tree** T, let P(T) be "sum(T) = sum(reverse(T))". We show P(T) for all **Trees** T by structural induction.

Base Case: By definition we have reverse(Nil) = Nil. Applying sum to both sides we get sum(Nil) = sum(reverse(Nil)), which is exactly P(Nil), so the base case holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary **Trees** L and R.

Inductive Step: Let x be an arbitrary integer. Goal: Show P(Tree(x, L, R)) holds.

We have,

```
\begin{split} \operatorname{sum}(\operatorname{reverse}(\operatorname{Tree}(x,L,R))) &= \operatorname{sum}(\operatorname{Tree}(x,\operatorname{reverse}(R),\operatorname{reverse}(L))) & [\operatorname{Definition of reverse}] \\ &= x + \operatorname{sum}(\operatorname{reverse}(R)) + \operatorname{sum}(\operatorname{reverse}(L)) & [\operatorname{Definition of sum}] \\ &= x + \operatorname{sum}(R) + \operatorname{sum}(L) & [\operatorname{Inductive Hypothesis}] \\ &= x + \operatorname{sum}(L) + \operatorname{sum}(R) & [\operatorname{Commutativity}] \\ &= \operatorname{sum}(\operatorname{Tree}(x,L,R)) & [\operatorname{Definition of sum}] \end{split}
```

This shows $P(\mathsf{Tree}(x, L, R))$.

Conclusion: Therefore, P(T) holds for all Trees T by structural induction.

4. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.

(a) Binary strings of even length.

Solution:

Basis: $\varepsilon \in S$.

Recursive Step: If $x \in S$, then $x00, x01, x10, x11 \in S$.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

"Brief" Justification: We will show that $x \in S$ iff x has even length (i.e., |x| = 2n for some $n \in \mathbb{N}$). (Note: "brief" is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose $x \in S$. If x is the empty string, then it has length 0, which is even. Otherwise, x is built up from the empty string by repeated application of the recursive step, so it is of the form $x_1x_2...x_n$, where each $x_i \in \{00, 01, 10, 11\}$. In that case, we can see that $|x| = |x_1| + |x_2| + \cdots + |x_n| = 2n$, which is even. Now, suppose that x has even length. If it's length is zero, then it is the empty string, which is in S. Otherwise, it has length 2n for some n > 0, and we can write x in the form $x_1x_2...x_n$, where each $x_i \in \{00, 01, 10, 11\}$ has length 2. Hence, we can see that x can be built up from the empty string by applying the recursive step with x_1 , then x_2 , and so on up to x_n , which shows that $x \in S$.

(b) Binary strings not containing 10.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it must be of the form 0^m1^n for some $m, n \in \mathbb{N}$.

Basis: $\varepsilon \in S$.

Recursive Step: If $x \in S$, then $0x \in S$ and $x1 \in S$.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 0s on the left. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as $y = 0^m 1^n$ for some $m, n \in \mathbb{N}$. We can build up the string y from the empty string by applying the rule $x \to 0x$ m times and then applying the rule $x \to x1$ n times. This shows that the string y is in S.

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

These must be of the form 0^m1^n for some $m, n \in \mathbb{N}$ with $m \leq n$. We can ensure that by pairing up the 0s with 1s as they are added:

Basis: $\varepsilon \in S$.

Recursive Step: If $x \in S$, then $0x1 \in S$ and $x1 \in S$.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0s at the front. And since every 0 comes with a 1, we always have at least as many 1s as 0s.

In the other direction, from our discussion above, any string of this form can be written as xy, where $x = 0^m 1^m$ and $y = 1^{n-m}$, since $n \ge m$. We can build up the string x from the empty string by applying the rule $x \to 0x1$ m times and then produce the string xy by applying the rule $x \to x1$ n-m times, which shows that the string is in S.

(d) Binary strings containing at most two 0s and at most two 1s.

Solution:

This is the set of all binary strings of length at most 4 except for these:

000, 1000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111

Since this is a **finite set**, we can define it recursively using only basis elements and no recursive step.

5. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

 $0 \cup ((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^*)$

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

 $0 \cup ((1 \cup 2)(0 \cup 1 \cup 2)^*0)$

(c) Write a regular expression that matches all binary strings that contain the substring "111", but not the substring "000".

Solution:

 $(01 \cup 001 \cup 1^*)^*(0 \cup 00 \cup \varepsilon)111(01 \cup 001 \cup 1^*)^*(0 \cup 00 \cup \varepsilon)$