
Section 08: Solutions

1. Strong Induction
Consider the function a(n) defined for n ≥ 1 recursively as follows.

a(1) = 1

a(2) = 3

a(n) = 2a(n− 1)− a(n− 2) for n ≥ 3

Use strong induction to prove that a(n) = 2n− 1 for all n ≥ 1.

Solution:

Let P (n) be “a(n) = 2n− 1“. We will show that P (n) is true for all n ≥ 1 by strong induction.

Base Cases (n = 1, n = 2):
(n = 1)
a(1) = 1 = 2 · 1− 1

(n = 2)
a(2) = 3 = 2 · 2− 1

So, P (1) and P (2) hold.

Inductive Hypothesis:
Suppose that P (j) is true for all integers 1 ≤ j ≤ k for some arbitrary k ≥ 2.

Inductive Step:
We will show P (k + 1) holds.

a(k + 1) = 2a(k)− a(k − 1) [Definition of a]
= 2(2k − 1)− (2(k − 1)− 1) [Inductive Hypothesis]
= 2k + 1 [Algebra]
= 2(k + 1)− 1 [Algebra]

So, P (k + 1) holds.

Conclusion:
Therefore, P (n) holds for all integers n ≥ 1 by principle of strong induction.

2. Structural Induction
(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c,X) is a string.

Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

1

Now, consider the following recursive definition:

double("") = ""
double(append(c,X)) = append(c, append(c, double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

For a string X, let P(X) be “len(double(X)) = 2len(X)”. We prove P(X) for all strings X by structural
induction on X.

Base Case (X = ""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""), so P("") holds

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: Goal: Show that P(append(c,X)) holds for any character c.

len(double(append(c,X))) = len(append(c, append(c, double(X)))) [By Definition of double]
= 1 + len(append(c, double(X))) [By Definition of len]
= 1 + 1 + len(double(X)) [By Definition of len]
= 2 + 2len(X) [By IH]
= 2(1 + len(X)) [Algebra]
= 2(len(append(c,X))) [By Definition of len]

This proves P(append(c,X)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)

Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T) ≥ size(T)/2 + 1/2 for all Trees T .

Solution:

For a tree T , let P be leaves(T) ≥ size(T)/2 + 1/2. We prove P for all trees T by structural induction on
T .

Base Case (T = •): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So, leaves(•) = 1 ≥
1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L,R.

2

Inductive Step: Goal: Show that P(Tree(•, L,R)) holds.

leaves(Tree(•, L,R)) = leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]
= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T)/2 + 1/2 [By Definition of size]

This proves P(Tree(•, L,R)).

Conclusion: Thus, P(T) holds for all trees T by structural induction.

(c) Prove the previous claim using strong induction. Define P (n) as “all trees T of size n satisfy leaves(T) ≥
size(T)/2 + 1/2”. You may use the following facts:

• For any tree T we have size(T) ≥ 1.

• For any tree T , size(T) = 1 if and only if T = •.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k + 1.

Solution:

Let P (n) be “all trees T of size n satisfy leaves(T) ≥ size(T)/2 + 1/2”. We show P (n) for all integers
n ≥ 1 by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is •, so T = •. By definition,
leaves(T) = leaves(•) = 1 and thus size(T) = 1 = 1/2 + 1/2 = size(T)/2 + 1/2. This shows the base
case holds.

Inductive Hypothesis: Suppose that P (j) holds for all integers j = 1, 2, . . . , k for some arbitrary integer
k ≥ 1.

Inductive Step: Let T be an arbitrary tree of size k+1. Since k+1 > 1, we must have T 6= •. It follows
from the definition of a tree that T = Tree(•, L,R) for some trees L and R. By definition, we have
size(T) = 1 + size(L) + size(R). Since sizes are non-negative, this equation shows size(T) > size(L)
and size(T) > size(R) meaning we can apply the inductive hypothesis. This says that leaves(L) ≥
size(L)/2 + 1/2 and leaves(R) ≥ size(R)/2 + 1/2.

We have,

leaves(T) = leaves(Tree(•, L,R))

= leaves(L) + leaves(R) [By Definition of leaves]
≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) [By IH]
= (1/2 + size(L)/2 + size(R)/2) + 1/2 [By Algebra]

=
1 + size(L) + size(R)

2
+ 1/2 [By Algebra]

= size(T)/2 + 1/2 [By Definition of size]

This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 1 by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size s ≥ 1. Then P (s) says that
all trees of size s satisfy the claim, including T .

3

3. Reversing a Binary Tree
Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L,R) is a Tree.

The sum function returns the sum of all elements in a Tree.

sum(Nil) = 0

sum(Tree(x, L,R)) = x+ sum(L) + sum(R)

The following recursively defined function produces the mirror image of a Tree.

reverse(Nil) = Nil
reverse(Tree(x, L,R)) = Tree(x, reverse(R), reverse(L))

Show that, for all Trees T that
sum(T) = sum(reverse(T))

Solution:

For a Tree T , let P (T) be “sum(T) = sum(reverse(T))”. We show P (T) for all Trees T by structural induction.

Base Case: By definition we have reverse(Nil) = Nil. Applying sum to both sides we get sum(Nil) =
sum(reverse(Nil)), which is exactly P (Nil), so the base case holds.

Inductive Hypothesis: Suppose P (L) and P (R) hold for some arbitrary Trees L and R.

Inductive Step: Let x be an arbitrary integer. Goal: Show P (Tree(x, L,R)) holds.

We have,

sum(reverse(Tree(x, L,R))) = sum(Tree(x, reverse(R), reverse(L))) [Definition of reverse]
= x+ sum(reverse(R)) + sum(reverse(L)) [Definition of sum]
= x+ sum(R) + sum(L) [Inductive Hypothesis]
= x+ sum(L) + sum(R) [Commutativity]
= sum(Tree(x, L,R)) [Definition of sum]

This shows P (Tree(x, L,R)).

Conclusion: Therefore, P (T) holds for all Trees T by structural induction.

4. Recursively Defined Sets of Strings
For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify
that your solution is correct.

(a) Binary strings of even length.

Solution:

Basis: ε ∈ S.
Recursive Step: If x ∈ S, then x00, x01, x10, x11 ∈ S.
Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

4

“Brief ” Justification: We will show that x ∈ S iff x has even length (i.e.,|x|= 2n for some n ∈ N). (Note:
“brief” is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose x ∈ S. If x is the empty string, then it has length 0, which is even. Otherwise, x is built up from
the empty string by repeated application of the recursive step, so it is of the form x1x2...xn, where each
xi ∈ {00, 01, 10, 11}. In that case, we can see that |x|=|x1|+|x2|+···+|xn|= 2n, which is even. Now,
suppose that x has even length. If it’s length is zero, then it is the empty string, which is in S. Otherwise,
it has length 2n for some n > 0, and we can write x in the form x1x2...xn, where each xi ∈ {00, 01, 10, 11}
has length 2. Hence, we can see that x can be built up from the empty string by applying the recursive
step with x1, then x2, and so on up to xn, which shows that x ∈ S.

(b) Binary strings not containing 10.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it
must be of the form 0m1n for some m,n ∈ N.

Basis: ε ∈ S.

Recursive Step: If x ∈ S, then 0x ∈ S and x1 ∈ S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after
a 1 since it only adds 0s on the left. Hence, every string in S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as y = 0m1n for
some m,n ∈ N. We can build up the string y from the empty string by applying the rule x → 0x m times
and then applying the rule x → x1 n times. This shows that the string y is in S.

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

These must be of the form 0m1n for some m,n ∈ N with m ≤ n. We can ensure that by pairing up the
0s with 1s as they are added:

Basis: ε ∈ S.

Recursive Step: If x ∈ S, then 0x1 ∈ S and x1 ∈ S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0s at the
front. And since every 0 comes with a 1, we always have at least as many 1s as 0s.

In the other direction, from our discussion above, any string of this form can be written as xy, where
x = 0m1m and y = 1n−m, since n ≥ m. We can build up the string x from the empty string by applying
the rule x → 0x1 m times and then produce the string xy by applying the rule x → x1 n−m times, which
shows that the string is in S.

(d) Binary strings containing at most two 0s and at most two 1s.

Solution:

5

This is the set of all binary strings of length at most 4 except for these:

000, 1000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.

5. Regular Expressions
(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

6

	1 Strong Induction
	2 Structural Induction
	3 Reversing a Binary Tree
	4 Recursively Defined Sets of Strings
	5 Regular Expressions

