
Section 07: Solutions

1. Midterm Review: Translation
Let your domain of discourse be all coffee drinks. You should use the following predicates:

• soy(x) is true iff x contains soy milk.

• whole(x) is true iff x contains whole milk.

• sugar(x) is true iff x contains sugar

• decaf(x) is true iff x is not caffeinated.

• vegan(x) is true iff x is vegan.

• RobbieLikes(x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and
usual math connectors like = and 6=.

(a) Coffee drinks with whole milk are not vegan. Solution:

∀x(whole(x) → ¬ vegan(x)).

(b) Robbie only likes one coffee drink, and that drink is not vegan. Solution:

∃x∀y(RobbieLikes(x) ∧ ¬ Vegan(x) ∧ [RobbieLikes(y) → x = y])

OR ∃x(RobbieLikes(x) ∧ ¬ Vegan(x) ∧ ∀y[RobbieLikes(y) → x = y])

(c) There is a drink that has both sugar and soy milk. Solution:

∃x(sugar(x) ∧ soy(x))

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain
restriction.

∀x([decaf(x) ∧ RobbieLikes(x)] → sugar(x))

Solution:

Every decaf drink that Robbie likes has sugar.

Statements like “For every decaf drink, if Robbie likes it then it has sugar” are equivalent, but only partially
take advantage of domain restriction.

2. Midterm Review: Number Theory
Let p be a prime number at least 3, and let x be an integer such that x2 mod p = 1.

(a) Show that if an integer y satisfies y ≡ 1 (mod p), then y2 ≡ 1 (mod p). (this proof will be short!)
(Try to do this without using the theorem ”Raising Congruences To A Power”)
Solution:
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Let y be an arbitrary integer and suppose y ≡ 1 (mod p). We can multiply congruences, so multiplying
this congruence by itself we get y2 ≡ 12 (mod p). Since y is arbitrary, the claim holds.

(b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. That is, show the
claim directly from the definitions.

Solution:

Suppose x ≡ 1 (mod p). By the definition of Congruences, p | (x − 1). Therefore, by the definition of
divides, there exists an integer k such that

pk = (x− 1)

By multiplying both sides of pk = (x - 1) by (x + 1) and re-arranging the equation, we have

pk(x+ 1) = (x− 1)(x+ 1)

p(k(x+ 1)) = (x− 1)(x+ 1)

Since (x− 1)(x+ 1) = x2 − 1, by replacing (x− 1)(x+ 1) with x2 − 1, we have

p(k(x+ 1)) = x2 − 1

Note that since k and x are integers, (k (x + 1)) is also an integer. Therefore, by the definition of divides
p | x2 − 1.
Hence, by the definition of Congruences, x2 ≡ 1 (mod p).

(c) From part (a), we can see that x mod p can equal 1. Show that for any integer x, if x2 ≡ 1 (mod p), then
x ≡ 1 (mod p) or x ≡ −1 (mod p). That is, show that the only value x mod p can take other than 1 is p− 1.
Hint: Suppose you have an x such that x2 ≡ 1 (mod p) and use the fact that x2 − 1 = (x− 1)(x+ 1)
Hint: You may the following theorem without proof: if p is prime and p | (ab) then p | a or p | b.

Solution:

Suppose x2 ≡ 1 (mod p). By the definition of Congruences,

p | x2 − 1

Since (x− 1)(x+ 1) = x2 − 1, by replacing x2 − 1 with (x− 1)(x+ 1), we have

p | (x− 1)(x+ 1)

Note that for an integer p if p is a prime number and p | (ab), then p | a or p | b. In this case, since p is a
prime number, by applying the rule, we have p | (x− 1) or p | (x+ 1).
Therefore, by the definition of Congruences, we have x ≡ 1 (mod p) or x ≡ −1 (mod p).

3. Midterm Review: Induction
For any n ∈ N, define Sn to be the sum of the squares of the first n positive integers, or

Sn = 12 + 22 + · · ·+ n2.

Prove that for all n ∈ N, Sn = 1
6n(n+ 1)(2n+ 1).
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Solution:

Let P(n) be the statement “Sn = 1
6n(n+ 1)(2n+ 1)” defined for all n ∈ N. We prove that P(n) is true for all

n ∈ N by induction on n.

Base Case: When n = 0, we know the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S0 = 0. Since 1

6 (0)(0+ 1)((2)(0)+ 1) = 0, we know that P(0) is true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary k ∈ N.

Inductive Step: Examining Sk+1, we see that

Sk+1 = 12 + 22 + · · ·+ k2 + (k + 1)2 = Sk + (k + 1)2.

By the inductive hypothesis, we know that Sk = 1
6k(k + 1)(2k + 1). Therefore, we can substitute and

rewrite the expression as follows:

Sk+1 = Sk + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)

(
1

6
k(2k + 1) + (k + 1)

)
=

1

6
(k + 1) (k(2k + 1) + 6(k + 1))

=
1

6
(k + 1)

(
2k2 + 7k + 6

)
=

1

6
(k + 1)(k + 2)(2k + 3)

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Conclusion: P (n) for all integers n ≥ 0 by the principle of induction.

4. Induction with Formulas
These problems are a little more difficult and abstract. Try making sure you can do all the other problems before
trying these ones.

(a) (i) Show that given two sets A and B that A ∪B = A ∩B. (Don’t use induction.)

Solution:

Let x be arbitrary. Then,

x ∈ A ∪B ≡ ¬(x ∈ A ∪B) [Definition of complement]
≡ ¬(x ∈ A ∨ x ∈ B) [Definition of union]
≡ ¬(x ∈ A) ∧ ¬(x ∈ B) [De Morgan’s Laws]
≡ x ∈ A ∧ x ∈ B [Definition of complement]
≡ x ∈ (A ∩B) [Definition of intersection]

Since x was arbitrary we have that x ∈ A ∪B if and only if x ∈ A∩B for all x. By the definition of
set equality we’ve shown,

A ∪B = A ∩B.
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(ii) Show using induction that for an integer n ≥ 2, given n sets A1, A2, . . . , An−1, An that

A1 ∪A2 ∪ · · · ∪An−1 ∪An = A1 ∩A2 ∩ · · · ∩An−1 ∩An

Solution:

Let P (n) be “given n sets A1, A2, . . . , An−1, An it holds that A1 ∪A2 ∪ · · · ∪An = A1 ∩ A2 ∩ · · · ∩
An−1 ∩An.” We show P (n) for all integers n ≥ 2 by induction on n.

Base Case: P (2) says that for two sets A1 and A2 that A1 ∪A2 = A1 ∩ A2, which is exactly part
(a) so P (2) holds.

Inductive Hypothesis: Suppose that P (k) holds for some arbitrary integer k ≥ 2.

Inductive Step: Let A1, A2, . . . , Ak, Ak+1 be sets. Then by part (a) we have,

(A1 ∪A2 ∪ · · · ∪Ak) ∪Ak+1 = A1 ∪A2 ∪ · · · ∪Ak ∩Ak+1.

By the inductive hypothesis we have A1 ∪A2 ∪ · · ·Ak = A1 ∩A2 ∩ · · · ∩Ak. Thus,

A1 ∪A2 ∪ · · · ∪Ak ∩Ak+1 = (A1 ∩A2 ∩ · · ·Ak) ∩Ak+1.

We’ve now shown

A1 ∪A2 ∪ · · · ∪Ak ∪Ak+1 = A1 ∩A2 ∩ · · ·Ak ∩Ak+1.

which is exactly P (k + 1).

Conclusion P (n) holds for all integers n ≥ 2 by the principle of induction.

(b) (i) Show that given any integers a, b, and c, if c | a and c | b, then c | (a+ b). (Don’t use induction.)

Solution:

Let a, b, and c be arbitrary integers and suppose that c | a and c | b. Then by definition there exist
integers j and k such that a = jc and b = kc. Then a + b = jc + kc = (j + k)c. Since j + k is an
integer, by definition we have c | (a+ b).

(ii) Show using induction that for any integer n ≥ 2, given n numbers a1, a2, . . . , an−1, an, for any integer c
such that c | ai for i = 1, 2, . . . , n, that

c | (a1 + a2 + · · ·+ an−1 + an).

In other words, if a number divides each term in a sum then that number divides the sum.

Solution:

Let P (n) be “given n numbers a1, a2, . . . , an−1, an, for any integer c such that c | ai for i = 1, 2, . . . , n,
it holds that c | (a1 + a2 + · · ·+ an).” We show P (n) holds for all integer n ≥ 2 by induction on n.

Base Case: P (2) says that given two integers a1 and a2, for any integer c such that c | a1 and c | a2
it holds that c | (a1 + a2). This is exactly part (a) so P (2) holds.

Inductive Hypothesis: Suppose that P (k) holds for some arbitrary integer k ≥ 2.

Inductive Step: Let a1, a2, . . . , ak, ak+1 be k + 1 integers. Let c be arbitrary and suppose that
c | ai for i = 1, 2, . . . , k + 1. Then we can write

a1 + a2 + · · ·+ ak + ak+1 = (a1 + a2 + · · ·+ ak) + ak+1.
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The sum a1 + a2 + · · · + ak has k terms and c divides all of them, meaning we can apply the
inductive hypothesis. It says that c | (a1 + a2 + · · · + ak). Since c | (a1 + a2 + · · · + ak) and
c | ak+1, by part (a) we have,

c | (a1 + a2 + · · ·+ ak + ak+1).

This shows P (k + 1).

Conclusion: P (n) holds for all integers n ≥ 2 by induction the principle of induction.

5. Cantelli’s Rabbits
Xavier Cantelli owns some rabbits. The number of rabbits he has in year n is described by the function f(n):

f(0) = 0

f(1) = 1

f(n) = 2f(n− 1)− f(n− 2) for n ≥ 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n. That is, construct a formula for
f(n) and prove its correctness.

Solution:

Let P (n) be “f(n) = n”. We prove that P (n) is true for all n ∈ N by strong induction on n.

Base Cases (n = 0, n = 1): f(0) = 0 and f(1) = 1 by definition.

Inductive Hypothesis: Assume that P (0) ∧ P (1) ∧ . . . P (k) hold for some arbitrary k ≥ 1.

Inductive Step: We show P (k + 1):

f(k + 1) = 2f(k)− f(k − 1) [Definition of f ]
= 2(k)− (k − 1) [Induction Hypothesis]
= k + 1 [Algebra]

Conclusion: P (n) is true for all n ∈ N by principle of strong induction.

6. Walk the Dawgs
Suppose a dog walker takes care of n ≥ 12 dogs. The dog walker is not a strong person, and will walk dogs in
groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs
into groups of 3 or 7.

Solution:

Let P (n) be “a group with n dogs can be split into groups of 3 or 7 dogs.” We will prove P (n) for all natural
numbers n ≥ 12 by strong induction.

Base Cases n = 12, 13, 14, or 15: 12 = 3 + 3 + 3 + 3, 13 = 3 + 7 + 3, 14 = 7 + 7, So P (12), P (13), and
P (14) hold.

Inductive Hypothesis: Assume that P (12), . . . , P (k) hold for some arbitrary k ≥ 14.

Inductive Step: Goal: Show k + 1 dogs can be split into groups of size 3 or 7.
We first form one group of 3 dogs. Then we can divide the remaining k−2 dogs into groups of 3 or 7 by
the assumption P (k−2). (Note that k ≥ 14 and so k−2 ≥ 12; thus, P (k−2) is among our assumptions
P (12), . . . , P (k).)
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Conclusion: P (n) holds for all integers n ≥ 12 by by principle of strong induction.
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