## Section 05: Number Theory

## 1. Modular Arithmetic I

Let the domain of discourse be integers. Consider the following claim:

$$
\forall a \forall b((a|b \wedge b| a) \rightarrow(a=b \vee a=-b))
$$

For this question, you may use the following fact:
Fact 1: $\forall a \forall b(a b=1 \rightarrow a=1 \vee a=-1)$
(a) Translate the claim into English.
(b) Write a formal proof that the claim holds.
(c) Translate your proof to English.

## 2. Modular Arithmetic II

Let the domain of discourse be positive integers, and let $n$ and $m$ not be equal to 1 . Consider the following claim:

$$
\forall n \forall m \forall a \forall b\left(\left(n \mid m \wedge a \equiv_{m} b\right) \rightarrow a\left(\equiv_{n} b\right)\right)
$$

(a) Translate the claim into English.
(b) Write a formal proof that the claim holds.
(c) Translate your proof to English.

## 3. Euclid's Lemma ${ }^{1}$

Let the domain of discourse be integers. Consider the following claim:

$$
\forall p \forall a \forall b((\operatorname{Prime}(p) \wedge p \mid a b) \rightarrow(p|a \vee p| b))
$$

Recall the definition of prime given in lecture:

$$
\operatorname{Prime}(p):=\neg(p=1) \wedge \forall x((x \mid p) \rightarrow(x=1 \vee x=p))
$$

For this question, you can use the following facts:
Fact 1: If an integer $p$ divides $a b$ and $\operatorname{gcd}(p, a)=1$, then $p$ divides $b$.
Fact 2: $\operatorname{GCD}(a, b) \mid a$ and $\operatorname{GCD}(a, b) \mid b$.
(a) Translate the claim into English.
(b) Write a formal proof that the claim holds.
(c) Translate your proof to English.

## 4. Divisors and Primes

Write an English proof of the following claim about a positive integer $n$ : if the sum of the divisors of $n$ is $n+1$, then $n$ is prime.

Hint: note that $n \mid n$ is always true.

## 5. Have we derived yet?

Each of the following proofs has some mistake in its reasoning - identify that mistake.
(a) Proof. If it is sunny, then it is not raining. It is not sunny. Therefore it is raining.
(b) Prove that if $x+y$ is odd, either $x$ or $y$ is odd but not both.

Proof. Suppose without loss of generality that $x$ is odd and $y$ is even.
Then, $\exists k x=2 k+1$ and $\exists m y=2 m$. Adding these together, we can see that $x+y=2 k+1+2 m=$ $2 k+2 m+1=2(k+m)+1$. Since $k$ and $m$ are integers, we know that $k+m$ is also an integer. So, we can say that $x+y$ is odd. Hence, we have shown what is required.
(c) Prove that $2=1 .:$ )

Proof. Let $a, b$ be two equal, non-zero integers. Then,

$$
\begin{aligned}
a & =b & & \\
a^{2} & =a b & & {[\text { MULTIPLY BOTH SIDES BY A] }} \\
a^{2}-b^{2} & =a b-b^{2} & & {\left[\text { SUBTRACT } b^{2} \text { FROM BOTH SIDES }\right] } \\
(a-b)(a+b) & =b(a-b) & & {[\text { FACTOR BOTH SIDES }] } \\
a+b & =b & & {[\text { DIVIDE BOTH SIDES BY } a-b] } \\
b+b & =b & & {[\text { SINCE } a=b] } \\
2 b & =b & & {[\text { SimPLIFY }] } \\
2 & =1 & & {[\text { DIVIDE BOTH SIDES BY B }] }
\end{aligned}
$$

[^0](d) Prove that $\sqrt{3}+\sqrt{7}<\sqrt{20}$

Proof.

$$
\begin{aligned}
& \sqrt{3}+\sqrt{7}<\sqrt{20} \\
& (\sqrt{3}+\sqrt{7})^{2}<20 \\
& 3+2 \sqrt{21}+7<20 \\
& 19.165<20
\end{aligned}
$$

It is true that $19.165<20$, hence, we have shown that $\sqrt{3}+\sqrt{7}<\sqrt{20}$

## 6. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.
(b) Calculate $\operatorname{gcd}(17,31)$.
(c) Find the multiplicative inverse of $6(\bmod 7)$.
(d) Does 49 have an multiplicative inverse $(\bmod 7)$ ?

## 7. Extended Euclidean Algorithm

(a) Find the multiplicative inverse $y$ of $7 \bmod 33$. That is, find $y$ such that $7 y \equiv_{33} 1$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
(b) Now, solve $7 z \equiv_{33} 2$ for all of its integer solutions $z$.
(c) Prove that the solutions to the equation from (b) are the same as the equation $5 z+1 \equiv_{33} 3-2 z$, with an English proof.
(d) Show that the equation $22 x \equiv_{33} 15$ has no solutions, with an English proof.

## 8. Efficient Modular Exponentiation

(a) Compute $2^{71} \bmod 35$ using the efficient modular exponentiation algorithm.
(b) How many multiplications does the algorithm use for this computation?


[^0]:    ${ }^{1}$ This proof isn't much longer than what you've seen before, but it can be a little easier to get stuck - use these as a chance to practice how to get unstuck if you do!

