Section 02: Digital Logic and Equivalence Proofs

1. Circuitous

Translate the following circuit into a logical expression.

2. Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using the specified method(s).
(a) $\neg p \rightarrow(s \rightarrow r)$ vs. $s \rightarrow(p \vee r)$ using (i) truth tables and (ii) propositional equivalences.
(b) $p \leftrightarrow \neg p$ vs. F (Hint: recall the Biconditional rule $p \leftrightarrow r \equiv(p \rightarrow r) \wedge(r \rightarrow p))$ using propositional equivalences.

3. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent using a truth table and specifying an input they differ on.
(a) $p \rightarrow r$ vs. $r \rightarrow p$
(b) $a \rightarrow(b \wedge c)$ vs. $(a \rightarrow b) \wedge c$

4. More Circuits

Let a Q gate exist such that $Q(p, q)=\neg p \oplus q$. Using only NOT, OR and Q gates, draw a circuit that represents the logical expression $(a \wedge b) \oplus c$.

5. They mean the same thing

Prove the following claims using chains of elementary equivalences, as shown in lecture:

$$
\begin{align*}
\neg(\neg q \vee r) & \equiv \neg(\neg q) \wedge \neg r \tag{1}\\
\neg(\neg q) \wedge \neg r & \equiv q \wedge \neg r \tag{2}\\
q \wedge \neg r & \equiv \neg r \wedge q \tag{3}
\end{align*}
$$

Your friend says this means that $\neg(q \rightarrow r) \equiv \neg r \wedge q$. Is that true?

6. Equivalent Translations

Prove that the following English statements are equivalent.
(i) Unless it isn't raining or I don't have an umbrella, I buy a book.
(ii) It isn't raining or I don't have an umbrella or I buy a book.

7. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.
(a) $\neg p \vee(\neg q \vee(p \wedge q))$
(b) $\neg(p \vee(q \wedge p))$

8. Properties of XOR

Like \wedge and \vee, the \oplus operator (exclusive or) has many interesting properties. For example, it is easy to verify with a truth table that \oplus is also associative. In this problem, we will prove some additional properties of \oplus.

For this problem only, you may also use the equivalence

$$
p \oplus q \equiv(p \wedge \neg q) \vee(\neg p \wedge q)
$$

which you may cite as "Definition of \oplus ". This equivalence allows you to translate \oplus into an expression involving only \wedge, \vee, and \neg, so that the standard equivalences can then be applied.

Prove the following claims using chains of elementary equivalences, as shown in lecture:
(a) $p \oplus q \equiv q \oplus p$ (Commutativity)
(b) $p \oplus p \equiv \mathrm{~F}$ and $p \oplus \neg p \equiv \mathrm{~T}$
(c) $p \oplus \mathrm{~F} \equiv p$ and $p \oplus \mathrm{~T} \equiv \neg p$
(d) $(\neg p) \oplus q \equiv \neg(p \oplus q) \equiv p \oplus(\neg q)$. I.e., negating one of the inputs negates the overall expression.

