
Section 02: Solutions

1. Circuitous
Translate the following circuit into a logical expression.

r

p NOT

NOT AND

OR NOT OUT

Solution:

¬(¬p ∨ (p ∧ ¬r))

2. Equivalences
Prove that each of the following pairs of propositional formulas are equivalent using the specified method(s).

(a) ¬p → (s → r) vs. s → (p ∨ r) using (i) truth tables and (ii) propositional equivalences. Solution:

(i)

p r s ¬p (s → r) (p ∨ r) ¬p → (s → r) s → (p ∨ r)

T T T F T T T T
T T F F T T T T
T F T F F T T T
T F F F T T T T
F T T T T T T T
F T F T T T T T
F F T T F F F F
F F F T T F T T

(ii)

1



¬p → (s → r) ≡ ¬¬p ∨ (s → r) Law of Implication
≡ p ∨ (s → r) Double Negation
≡ p ∨ (¬s ∨ r) Law of Implication
≡ (p ∨ ¬s) ∨ r Associativity
≡ (¬s ∨ p) ∨ r Commutativity
≡ ¬s ∨ (p ∨ r) Associativity
≡ s → (p ∨ r) Law of Implication

(b) p ↔ ¬p vs. F (Hint: recall the Biconditional rule p ↔ r ≡ (p → r) ∧ (r → p)) using propositional
equivalences. Solution:

p ↔ ¬p ≡ (p → ¬p) ∧ (¬p → p) Biconditional
≡ (¬p ∨ ¬p) ∧ (¬¬p ∨ p) Law of Implication
≡ (¬p ∨ ¬p) ∧ (p ∨ p) Double Negation
≡ ¬p ∧ p Idempotence
≡ F Negation

3. Non-equivalence
Prove that the following pairs of propositional formulae are not equivalent using a truth table and specifying an
input they differ on.

(a) p → r vs. r → p Solution:

p r p → r r → p

T T T T
T F F T
F T T F
F F T T

When p = T and r = F, then p → r ≡ F, but r → p ≡ T.

(b) a → (b ∧ c) vs. (a → b) ∧ c Solution:

2



a b c b ∧ c a → b

T T T T T
T T F F T
T F T F F
T F F F F
F T T T T
F T F F T
F F T F T
F F F F T

When a = F and c = F, then a → (b∧ c) ≡ T (by vacuous truth), but (a → b)∧ c ≡ F (because c is false).

4. More Circuits
Let a Q gate exist such that Q(p, q) = ¬p ⊕ q. Using only NOT, OR and Q gates, draw a circuit that represents
the logical expression (a ∧ b)⊕ c.

Solution:

(a ∧ b)⊕ c ≡ (¬¬a ∧ b)⊕ c Double Negation
≡ (¬¬a ∧ ¬¬b)⊕ c Double Negation
≡ ¬(¬a ∨ ¬b)⊕ c De Morgan

c

b

a

NOT

NOT

OR

Q OUT

5. They mean the same thing
Prove the following claims using chains of elementary equivalences, as shown in lecture:

¬(¬q ∨ r) ≡ ¬(¬q) ∧ ¬r (1)
¬(¬q) ∧ ¬r ≡ q ∧ ¬r (2)

q ∧ ¬r ≡ ¬r ∧ q (3)

Your friend says this means that ¬(q → r) ≡ ¬r ∧ q. Is that true?

Solution:

3



¬(q → r) ≡ ¬(¬q ∨ r) Law of Implication
≡ ¬(¬q) ∧ ¬r De Morgan
≡ q ∧ ¬r Double Negation
≡ ¬r ∧ q Commutativity

For any statements A, B, and C, if A and B agree on all possible truth assignments and B and C do too, then A
and C agree on all possible truth assignments, so the above chain of equivalences shows that ¬(q → r) ≡ ¬r∧q.

6. Equivalent Translations
Prove that the following English statements are equivalent.
(i) Unless it isn’t raining or I don’t have an umbrella, I buy a book.
(ii) It isn’t raining or I don’t have an umbrella or I buy a book. Solution:

a : It is raining.

b : I have an umbrella.

c : I buy a book.

When we say unless a, b, this suggests that as long as a is not true, b will be true. Then, we can rewrite (i) as
follows:

¬(¬a ∨ ¬b) → c

With the same propositional variables, we can rewrite (ii) as:

¬a ∨ ¬b ∨ c

If these two compound propositions are equivalent, then the English statements are equivalent. Starting with
the left-hand side

¬(¬a ∨ ¬b) → c ≡ (¬¬a ∧ ¬¬b) → c De Morgan
≡ (a ∧ b) → c Double Negation
≡ ¬(a ∧ b) ∨ c Law of Implication
≡ (¬a ∨ ¬b) ∨ c De Morgan

Therefore, we’ve shown that the two English statements are equivalent.

7. Boolean Algebra
For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using
axioms and theorems of boolean algebra.

(a) ¬p ∨ (¬q ∨ (p ∧ q)) Solution:

First, we replace ¬,∨, and ∧. This gives us p′ + q′ + pq; note that the parentheses are not necessary in
boolean algebra, because the operations are all commutative and associative. We can use DeMorgan’s laws
to get the slightly simpler (pq)′+pq. Then, we can use commutativity to get pq+(pq)′ and complementarity
to get 1. (Note that this is another way of saying the formula is a tautology.)

4



(b) ¬(p ∨ (q ∧ p)) Solution:

First, we replace ¬,∨, and ∧ with their corresponding boolean operators, giving us (p+ (qp))′. Applying
DeMorgan’s laws once gives us p′(qp)′, and a second time gives us p′(q′ + p′), which is p′(p′ + q′) by
commutativity. By absorbtion, this is simply p′.

8. Properties of XOR
Like ∧ and ∨, the ⊕ operator (exclusive or) has many interesting properties. For example, it is easy to verify with
a truth table that ⊕ is also associative. In this problem, we will prove some additional properties of ⊕.

For this problem only, you may also use the equivalence

p⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q)

which you may cite as “Definition of ⊕”. This equivalence allows you to translate ⊕ into an expression involving
only ∧, ∨, and ¬, so that the standard equivalences can then be applied.

Prove the following claims using chains of elementary equivalences, as shown in lecture:

(a) p⊕ q ≡ q ⊕ p (Commutativity)

Solution:
p⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q) Definition of ⊕

≡ (¬p ∧ q) ∨ (p ∧ ¬q) Commutativity
≡ (q ∧ ¬p) ∨ (¬q ∧ p) Commutativity
≡ q ⊕ p Definition of ⊕

5



(b) p⊕ p ≡ F and p⊕ ¬p ≡ T

Solution:
p⊕ p ≡ (p ∧ ¬p) ∨ (¬p ∧ p) Definition of ⊕

≡ (p ∧ ¬p) ∨ (p ∧ ¬p) Commutativity
≡ (p ∧ ¬p) Idempotency
≡ F Negation

p⊕ ¬p ≡ (p ∧ ¬¬p) ∨ (¬p ∨ ¬p) Definition of ⊕
≡ (p ∧ p) ∨ (¬p ∨ ¬p) Double Negation
≡ p ∨ ¬p Idempotency
≡ T Negation

(c) p⊕ F ≡ p and p⊕ T ≡ ¬p

Solution:
p⊕ F ≡ (p ∧ ¬F) ∨ (¬p ∧ F) Definition of ⊕

≡ (p ∧ (¬F ∨ F)) ∨ (¬p ∧ F) Identity
≡ (p ∧ (F ∨ ¬F)) ∨ (¬p ∧ F) Commutativity
≡ (p ∧ T) ∨ (¬p ∧ F) Negation
≡ p ∨ (¬p ∧ F) Identity
≡ p ∨ F Domination
≡ p Identity

p⊕ T ≡ (p ∧ ¬T) ∨ (¬p ∧ T) Definition of ⊕
≡ (p ∧ ¬T) ∨ ¬p Identity
≡ (¬¬p ∧ ¬T) ∨ ¬p Double Negation
≡ ¬(¬p ∨ T) ∨ ¬p De Morgan
≡ ¬T ∨ ¬p Domination
≡ ¬(T ∧ p) De Morgan
≡ ¬(p ∧ T) Commutativity
≡ ¬p Identity

6



(d) (¬p)⊕ q ≡ ¬(p⊕ q) ≡ p⊕ (¬q). I.e., negating one of the inputs negates the overall expression.

Solution:
¬(p⊕ q) ≡ ¬((p ∧ ¬q) ∨ (¬p ∧ q)) Definition of ⊕

≡ ¬(p ∧ ¬q) ∧ ¬(¬p ∧ q) De Morgan
≡ (¬p ∨ ¬¬q) ∧ (¬¬p ∨ ¬q) De Morgan
≡ (¬p ∨ q) ∧ (p ∨ ¬q) Double Negation
≡ ((¬p ∨ q) ∧ p) ∨ ((¬p ∨ q) ∧ ¬q) Distributivity
≡ (p ∧ (¬p ∨ q)) ∨ (¬q ∧ (¬p ∨ q)) Commutativity
≡ ((p ∧ ¬p) ∨ (p ∧ q)) ∨ ((¬q ∧ ¬p) ∨ (¬q ∧ q)) Distributivity
≡ ((p ∧ ¬p) ∨ (p ∧ q)) ∨ ((¬q ∧ ¬p) ∨ (q ∧ ¬q)) Commutativity
≡ (F ∨ (p ∧ q)) ∨ ((¬q ∧ ¬p) ∨ F) Negation
≡ ((p ∧ q) ∨ F) ∨ ((¬q ∧ ¬p) ∨ F) Commutativity
≡ (p ∧ q) ∨ (¬q ∧ ¬p) Negation
≡ (¬¬p ∧ q) ∨ (¬q ∧ ¬p) Double Negation
≡ (¬¬p ∧ q) ∨ (¬p ∧ ¬q) Commutativity
≡ (¬p ∧ ¬q) ∨ (¬¬p ∧ q) Commutativity
≡ ¬p⊕ q Definition of ⊕

The second equivalence ¬(p⊕ q) ≡ p⊕ (¬q) follows from the first and Commutativity (part a).

7


	1 Circuitous
	2 Equivalences
	3 Non-equivalence
	4 TODO
	5 They mean the same thing
	6 Equivalent Translations
	7 Boolean Algebra
	8 Properties of XOR

