CSE 311: Foundations of Computing I

Set Theory

Well-Known Sets

- $\mathbb{N}=\{0,1,2, \ldots\}$ is the set of Natural Numbers.
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of Integers.
- $\mathbb{Q}=\{p / q: p, q \in \mathbb{Z} \wedge q \neq 0\}$ is the set of Rational Numbers.
- \mathbb{R} is the set of Real Numbers.

Set in Logic

- Every set gives rise to a predicate " $x \in S$ " that is true iff x is an element of the set.
- The shorthand " $x \notin S$ " means $\neg(x \in S)$.
- Sets can be defined from predicates using "set builder" notation: $S::=\{x: P(x)\}$
- Inference rules for definitions now apply to all sets defined from predicates:

Def of S	
$\frac{\mathrm{x} \in \mathrm{S}}{\therefore \mathrm{P}(\mathrm{x})}$	
$\frac{\mathrm{P}(\mathrm{x})}{}$	
$\therefore \mathrm{x} \in \mathrm{S}$	

- The shorthand " $\forall x \in S(Q(x))$ " means $\forall x((x \in S) \rightarrow Q(x))$.

The shorthand " $\exists x \in S(Q(x))$ " means $\exists x((x \in S) \wedge Q(x))$.

Set Operations

Let A, B be sets. We can define new sets from A and B :

- $A \cup B$ is the union of A and $B: \quad A \cup B::=\{x:(x \in A) \vee(x \in B)\}$
- $A \cap B$ is the intersection of A and $B: \quad A \cap B::=\{x:(x \in A) \wedge(x \in B)\}$
- $A \backslash B$ is the difference of A and $B: A \backslash B::=\{x:(x \in A) \wedge \neg(x \in B)\}$
- $A \oplus B$ is the symmetric difference of A and $B: \quad A \oplus B::=\{x:(x \in A) \oplus(x \in B)\}$
- \bar{A} is the complement of A with respect to "universe" $\mathcal{U}: \quad \bar{A}::=\{x:(x \in \mathcal{U}) \wedge \neg(x \in A)\} .{ }^{1}$
- $A \times B$ is the Cartesian product of A and $B: A \times B::=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}$
- $\mathcal{P}(A)$ is the Power Set of A, whose elements are themselves sets: $\mathcal{P}(A)::=\{B: B \subseteq A\}$

Set Comparison

Let A, B be sets. We can define new predicates that compare A and B :

- A equals B when they have the same elements: $A=B \quad::=\forall x((x \in A) \leftrightarrow(x \in B))$
- A is a subset of B when B contains all of A 's elements: $A \subseteq B::=\forall x((x \in A) \rightarrow(x \in B))$
- Theorem: $A=B$ iff $A \subseteq B$ and $B \subseteq A$

[^0]
[^0]: ${ }^{1}$ If \mathcal{U} is not specified, it is the entire domain of discourse.

