CSE 311: Foundations of Computing I

Set Theory

Well-Known Sets

- $\mathbb{N} = \{0, 1, 2, \dots\}$ is the set of *Natural Numbers*.
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is the set of *Integers*.
- $\mathbb{Q} = \{p/q : p, q \in \mathbb{Z} \land q \neq 0\}$ is the set of *Rational Numbers*.
- \mathbb{R} is the set of *Real Numbers*.

Set in Logic

- Every set gives rise to a predicate " $x \in S$ " that is true iff x is an element of the set.
- The shorthand " $x \notin S$ " means $\neg(x \in S)$.
- Sets can be defined from predicates using "set builder" notation: $S ::= \{x : P(x)\}$
- Inference rules for definitions now apply to all sets defined from predicates:

Def of S	Un
$x \in S$	Р
∴ P(x)	x

Undef S		
	P(x)	
	$x \in S$	

• The shorthand " $\forall x \in S (Q(x))$ " means $\forall x ((x \in S) \rightarrow Q(x))$. The shorthand " $\exists x \in S (Q(x))$ " means $\exists x ((x \in S) \land Q(x))$.

Set Operations

Let A, B be sets. We can define new sets from A and B:

- $A \cup B$ is the union of A and B: $A \cup B ::= \{x : (x \in A) \lor (x \in B)\}$
- $A \cap B$ is the intersection of A and B: $A \cap B ::= \{x : (x \in A) \land (x \in B)\}$
- $A \setminus B$ is the difference of A and B: $A \setminus B ::= \{x : (x \in A) \land \neg (x \in B)\}$
- $A \oplus B$ is the symmetric difference of A and B: $A \oplus B ::= \{x : (x \in A) \oplus (x \in B)\}$
- \overline{A} is the *complement* of A with respect to "universe" \mathcal{U} : $\overline{A} ::= \{x : (x \in \mathcal{U}) \land \neg (x \in A)\}$.¹
- $A \times B$ is the *Cartesian product* of A and B: $A \times B ::= \{x : \exists a \in A, \exists b \in B (x = (a, b))\}$
- $\mathcal{P}(A)$ is the *Power Set* of A, whose elements are themselves sets: $\mathcal{P}(A) ::= \{B : B \subseteq A\}$

Set Comparison

Let A, B be sets. We can define new predicates that compare A and B:

- A equals B when they have the same elements: $A = B ::= \forall x ((x \in A) \leftrightarrow (x \in B))$
- A is a subset of B when B contains all of A's elements: $A \subseteq B ::= \forall x ((x \in A) \to (x \in B))$
- Theorem: A = B iff $A \subseteq B$ and $B \subseteq A$

¹If \mathcal{U} is not specified, it is the entire domain of discourse.