
CSE 311: Foundations of Computing

Lecture 28: Undecidability

Final exam Monday, Review session Sunday

• Monday at either 2:30-4:20 (B) or 4:30-6:20 (A)
– CSE2 G20
– bring your UW ID
– 1 hour and 50 minutes

• Comprehensive: Full probs only on topics that were covered
in homework. May have small probs on other topics.
– reference sheets will be included

• Review session: Sunday at 3pm in CSE2 G20
– bring your questions

Final Exam

• 9 problems covering:
– DFA / NFA / RE / CFG design
– DFA / NFA / RE algorithms
– Irregularity
– Number theory
– Set theory
– Strong induction
– Structural induction
– Small questions on anything else
– (any English proofs would be translations or templates)

Last time: Countable sets

A set 𝑺 is countable iff we can order the elements of 𝑺 as
𝑺 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … }

Countable sets:
ℕ - the natural numbers
ℤ - the integers
ℚ - the rationals
Σ∗- the strings over any finite Σ
The set of all Java programs

} Shown
by
“dovetailing”

Last time: Not every set is countable

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.

A note on this proof

• The set of rational numbers in [0,1) also have
decimal representations like this
– The only difference is that rational numbers always

have repeating decimals in their expansions 0.33333...
or .25000000...

• So why wouldn’t the same proof show that this set
of rational numbers is uncountable?
– Given any listing we could create the flipped diagonal

number 𝒅 as before
– However, 𝒅 would not have a repeating decimal

expansion and so wouldn’t be a rational #
It would not be a “missing” number, so no contradiction.

Uncomputable functions

We have seen that:
– The set of all (Java) programs is countable
– The set of all functions 𝑓 ∶ ℕ → {0,… , 9} is not countable

So: There must be some function 𝑓 ∶ ℕ → {0,… , 9} that is not
computable by any program!

Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

Binary Palindromes

{001, 10, 12}

Java

Uncomputable functions

Interesting… maybe.

Can we produce an explicit function that is uncomputable?

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

11
34
17
52
26
13
40
20
10
5
16
8
4
2
1

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

Nobody knows whether or not
this program halts on all inputs!

Some Notation

We’re going to be talking about Java code.

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());
}

What is P(CODE(P))?

“!!!!""""##$%%&'(()))*+,,---.////0111112234444444444455566666677899::;<”

The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves
the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

Then we can write this program:
public static void D(String s) {

if (H(s,s)) {
while (true); // don’t halt

} else {
return; // halt

}
}

public static bool H(String s, String x) { ... }

Does D(CODE(D)) halt?

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt
}

}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt
}

}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt
}

}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt
}

}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt
}

}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

Contradiction!The ONLY assumption was that th
e program H

exists so that assumption must have been false.

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt
}

}

Done

• We proved that there is no computer
program that can solve the Halting Problem.
– There was nothing special about Java*

[Church-Turing thesis]

• This tells us that there is no compiler that can check our
programs and guarantee to find any infinite loops they
might have.

Terminology

• With state machines, we say that a machine
“recognizes” the language L iff
– it accepts x ∈ Σ* if x ∈ L
– it rejects x ∈ Σ* if x ∉ L

• With Java programs / general computation, we
say that the computer “decides” the language L iff
– it halts with output 1 on input x ∈ Σ* if x ∈ L
– it halts with output 0 on input x ∈ Σ* if x ∉ L

(difference is the possibility that machine doesn’t halt)

• If no machine decides L, then L is “undecidable”

Where did the idea for creating D come from?

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt
} else {

return; // halt
}

}

Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

Write <P> for CODE(P)

This listing of all programs really does exist
since the set of all Java programs is countable

The goal of this “diagonal” argument is not
to show that the listing is incomplete but
rather to show that a “flipped” diagonal
element is not in the listing

Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1
0

0
1

0
0

1
0

Write <P> for CODE(P)

Want behavior of program 𝑫 to be
like the flipped diagonal, so it can’t
be in the list of all programs.

Al
l p

ro
gr

am
s P

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */
}

}

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore, for any program P, D differs from P on input code(P)

The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is
undecidable to show that other problems are
undecidable

General method (a “reduction”):
Prove that, if there were a program deciding B, then
there would be a program deciding the Halting Problem.

“B decidable →	 Halting Problem decidable”
Contrapositive:

“Halting Problem undecidable → B undecidable”
Therefore, B is undecidable

A CSE 142 assignment

Students should write a Java program that:
– Prints “Hello” to the console
– Eventually exits

GradeIt, PracticeIt, etc. need to grade these
How do we write that grading program?

WE CAN’T: THIS IS IMPOSSIBLE!

Another undecidable problem

• CSE 142 Grading problem:
– Input: CODE(Q)
– Output:

True if Q outputs “HELLO” and exits
False if Q does not do that

• Theorem: The CSE 142 Grading is undecidable.
• Proof idea: Show that, if there is a program T to decide

CSE 142 grading, then there is a program H to decide the
Halting Problem for code(P) and input x.

Another undecidable problem
Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program T that decide CSE 142
grading problem. Then, there is a program H to decide the
Halting Problem for code(P) and input x by
• transform P (with input x) into the following program Q

Another undecidable problem
public class Q {

private static String x = “...”;

public static void main(String[] args) {
PrintStream out = System.out;
System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));
System.setIn(new ReaderInputStream(new StringReader(x)));

P.main(args);

out.println(“HELLO”);
}

}

class P {
public static void main(String[] args) { ... }
...

}

Another undecidable problem
Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program T that decide CSE 142
grading problem. Then, there is a program H to decide the
Halting Problem for code(P) and input x by
• transform P (with input x) into the following program Q
• run T on code(Q)

– if it returns true, then P halted
must halt in order to print “HELLO”

– if it returns false, then P did not halt
program Q can’t output anything other than “HELLO”

More Reductions

- Can use undecidability of these problems to show that
other problems are undecidable.

- For instance:
EQUIV(𝑃, 𝑄) : True if 𝑃 𝑥 and 𝑄(𝑥) have the same

behavior for every input 𝑥
False otherwise

Rice’s theorem
Not every problem on programs is undecidable!
Which of these is decidable?
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after less than 100 steps

false otherwise
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after more than 100 steps

false otherwise

Rice’s Theorem:
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.

Rice’s theorem
Not every problem on programs is undecidable!
Which of these is decidable?
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after less than 100 steps

false otherwise
• Input CODE(P) and x

Output: true if P prints “ERROR” on input x
after more than 100 steps

false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.

ARE DIFFICULT

CFGs are complicated

We know can answer almost any question about REs
• Do two RegExps recognize the same language?

But many problems about CFGs are undecidable!
• Do two CFGs generate the same language?
• Is there any string that two CFGs both generate?
– more general: “CFG intersection” problem

• Does a CFG generate every string?

Takeaway from undecidability

• You can’t rely on the idea of improved
compilers and programming languages to
eliminate all programming errors
– truly safe languages can’t possibly do general

computation

• Document your code
– there is no way you can expect someone else

to figure out what your program does with just
your code; since in general it is provably
impossible to do this!

