
CSE 311: Foundations of Computing

Lecture 26: Languages vs Representations:                      
Limitations of Finite Automata and Regular Expressions



Last time: Algorithms for Regular Languages

We have seen algorithms for
• RE to NFA
• NFA to DFA
• DFA/NFA to RE (not tested)
• DFA minimization

Practice three of these in HW.
(May also be on the final.)



The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

≡
Languages represented by DFA, NFAs, or regular expressions
are called Regular Languages



Regular expressions ≡ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

apply DFA minimization lazily while simulating the NFA)



Example Corollary of These Results

(This is the complement with respect to the universe of all strings 
over the alphabet, i.e., !𝐀 = 𝚺∗ \ 𝐀.)

Corollary:  If 𝐀 is the language of a regular expression,
then !𝐀 is the language of a regular expression*.



The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

≡



What languages have DFAs?  CFGs?

All of them?



Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

{001, 10, 12}



Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup:
All finite 
languages 
are regular.



DFAs Recognize Any Finite Language



DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.



Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup 2:
Surprising 
example here



An Interesting Infinite Regular Language 

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.
0, 00, 000, …

L is regular. How could this be?   
That seems to require comparing counts...

– easy for a CFG
– but seems hard for DFAs!



An Interesting Infinite Regular Language 

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.
0, 00, 000, …

L is regular. How could this be?   It is just the set of binary strings 
that are empty or begin and end with the same character!
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Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

??? Main Event:
Prove there is 
a context-free 
language 
that isn’t 
regular.

{001, 10, 12}



The language of “Binary Palindromes” is Context-Free

S → ε | 0 | 1 | 0S0 | 1S1



Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!): 
Q: What would a DFA need to keep track of to decide?
A: It would need to keep track of the “first part” of the input 

in order to check the second part against it
…but there are an infinite # of possible first parts and we 
only have finitely many states.

Proof idea: any machine that does not remember the entire first 
half will be wrong for some inputs



Useful Lemmas about DFAs

Lemma 1:  If DFA M takes 𝐱, 𝐲 ∈ 𝚺∗ to the same state, 
then for every 𝐳 ∈ 𝚺∗, M accepts 𝐱 • 𝐳 iff it accepts 𝐲 • 𝐳.

M can’t remember that the input was 𝐱, not 𝐲.

x z
y

x•z =  x1 x2 … xn z1 z2 … zk

y•z =  y1 y2 … ym z1 z2 … zk



Useful Lemmas about DFAs

Lemma 2:  If DFA M has n states and a set S contains 
more than n strings, then M takes at least two strings 
from S to the same state.

M can’t take n+1 or more strings to different states 
because it doesn’t have n+1 different states.
So, some pair of strings must go to the same state.



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b that end in the same state of M.

SUPER IMPORTANT POINT:  You do not get to choose 
what a and b are.  Remember, we’ve just proven they 
exist…we must take the ones we’re given!



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b that end in the same state of M.
Now, consider appending 0a to both strings.  

0aa1
q0a

0b1



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b that end in the same state of M.
Now, consider appending 0a to both strings.  

Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a also 
end in the same state, call it q. But then M makes a mistake: 
q needs to be an accept state since 0a10a ∈ B, but M would 
accept 0b10a ∉ B, which is an error.

0aa1
q0a

0b1



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b that end in the same state of M.
Now, consider appending 0a to both strings.  
Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a also 
end in the same state, call it q. But then M makes a mistake: 
q needs to be an accept state since 0a10a ∈ B, but M would 
accept 0b10a ∉ B, which is an error.
This proves that M does not recognize B, contradicting our 
assumption that it does. Thus, no DFA recognizes B.



Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M recognizes L.” 
2. Consider an INFINITE set S of prefixes (which we intend to 

complete later).
3. “Since S is infinite and M has finitely many states, there 

must be two strings sa and sb in S for sa≠ sb that end up at 
the same state of M.”

4. Consider appending the (correct) completion t to each of 
the two strings.

5. “Since sa and sb both end up at the same state of M, and 
we appended the same string t, both sat and sbt end at the 
same state q of M.   Since sat ∈ L and sbt ∉ L, M does not 
recognize L.”    

6. “Thus, no DFA recognizes L.”



Showing that a Language L is not regular

The choice of S is the creative part of the proof

You must find an infinite set S with the property that no two 
strings can be taken to the same state

– i.e., for every pair of strings S there is an “accept” 
completion that the two strings DO NOT SHARE



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.

Consider appending  1a to both strings.  



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.

Consider appending  1a to both strings.  

Note that 0a1a∈ A, but 0b1a∉ A since a ≠ b.  But they both end 
up in the same state  of M, call it q.  Since 0a1a∈ A, state q
must be an accept state but then M would incorrectly accept 
0b1a∉ A so M does not recognize A.    
Thus, no DFA recognizes A.



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, (a and (b for some a ≠ b that 
end in the same state in M.



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, (a and (b for some a ≠ b that 
end in the same state in M.

Consider appending  )a to both strings.  



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, (a and (b for some a ≠ b that 
end in the same state in M.

Consider appending  )a to both strings.  

Note that (a)a ∈ P, but (b)a ∉ P since a ≠ b.  But they both end up 
in the same state of M, call it q.  Since (a)a ∈ P, state q must be 
an accept state but then M would incorrectly accept (b)a ∉ P so 
M does not recognize P.    
Thus, no DFA recognizes P.



Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M recognizes L.” 
2. Consider an INFINITE set S of prefixes (which we intend to 

complete later). It is imperative that for every pair of 
strings in our set there is an “accept” completion that the 
two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there 
must be two strings sa and sb in S for sa≠ sb that end up at 
the same state of M.”

4. Consider appending the (correct) completion t to each of 
the two strings.

5. “Since sa and sb both end up at the same state of M, and 
we appended the same string t, both sat and sbt end at the 
same state q of M.   Since sat ∈ L and sbt ∉ L, M does not 
recognize L.”    

6. “Thus, no DFA recognizes L.”



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 
prefixes with the property that, for every pair sa≠ sb ∈ S, 
there is some string t such that one of sat, sbt is in L but the 
other isn’t.

• If S is infinite, then L is not regular
• If S is finite, then the minimal DFA for L has precisely            

|S| states, one reached by each member of S.



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 
prefixes with the property that, for every pair sa≠ sb ∈ S, 
there is some string t such that one of sat, sbt is in L but the 
other isn’t.

• If S is infinite, then L is not regular
• If S is finite, then the minimal DFA for L has precisely            

|S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.
– we separated exactly those states for which some t would make 

one accept and another not accept



Important Notes

• It is not necessary for our strings xz with x ∈ L to 
allow any string in the language
– we only need to find a small “core” set of strings that 

must be distinguished by the machine

• It is not true that, if L is irregular and L ⊆ U, then
U is irregular!
– we always have L ⊆ Σ* and Σ* is regular!
– our argument needs different answers: xz	∈	L↮yz ∈	L

for Σ*, both strings are always in the language

Do not claim in your proof that, 
because L ⊆ U, U is also irregular


