Lecture 25: NFAs and their relation to REs & DFAs
Recall: DFAs

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the set of strings that reach a final state from the start

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀</td>
<td>s₀</td>
<td>s₁</td>
</tr>
<tr>
<td>s₁</td>
<td>s₀</td>
<td>s₂</td>
</tr>
<tr>
<td>s₂</td>
<td>s₀</td>
<td>s₃</td>
</tr>
<tr>
<td>s₃</td>
<td>s₃</td>
<td>s₃</td>
</tr>
</tbody>
</table>
Recall: DFAs

• Each machine designed for strings over some fixed alphabet Σ.

• Must have a transition defined from each state for every symbol in Σ.

<table>
<thead>
<tr>
<th>Old State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_0</td>
<td>s_1</td>
</tr>
<tr>
<td>s_1</td>
<td>s_0</td>
<td>s_2</td>
</tr>
<tr>
<td>s_2</td>
<td>s_0</td>
<td>s_3</td>
</tr>
<tr>
<td>s_3</td>
<td>s_3</td>
<td>s_3</td>
</tr>
</tbody>
</table>
Last Time: Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled by symbols (like DFA) but
 – Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 – Also can have edges labeled by empty string ε

• **Definition:** x is in the language recognized by an NFA if and only if some valid execution of the machine gets to an accept state
Three ways of thinking about NFAs

- **Perfect guesser:** The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

- **Outside observer:** Is there a path labeled by x from the start state to some accepting state?

- **Parallel exploration:** The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Path Labels

Def: The label of path $v_0, v_1, ..., v_n$ is the concatenation of the labels of the edges $(v_0, v_1), (v_1, v_2), ..., (v_{n-1}, v_n)$.

Example: The label of path s_0, s_1, s_2, s_0, s_0 is 1100.
Deterministic Finite Automata (DFA)

• **Def:** x is in the language recognized by an DFA if and only if x labels a path from the start state to some final state

![DFA Diagram]

• Path $v_0, v_1, ..., v_n$ with $v_0 = s_0$ and label x describes a correct simulation of the DFA on input x
 - i-th step must match the i-th character of x
Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol—can have 0 or >1
 - Also can have edges labeled by empty string ε

- **Definition:** x is in the language recognized by an NFA if and only if x labels some path from the start state to an accepting state
Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)

- Outside observer: Is there a path labeled by x from the start state to some accepting state?

- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
Compare with the smallest DFA
Parallel Exploration view of an NFA

Input string 0101100

0101100
Summary of NFAs

• Generalization of DFAs
 – drop two restrictions of DFAs
 – every DFA is an NFA

• Seem to be more powerful
 – designing is easier than with DFAs

• Seem related to regular expressions
The story so far...

\[
\begin{align*}
\text{REs} & \subseteq \text{CFGs} \\
\text{DFAs} & \subseteq \text{NFAs}
\end{align*}
\]
Theorem: For any set of strings (language) \(A \) described by a regular expression, there is an NFA that recognizes \(A \).

Proof idea: Structural induction based on the recursive definition of regular expressions...
Regular Expressions over Σ

- **Basis:**
 - ε is a regular expression
 - a is a regular expression for any $a \in \Sigma$

- **Recursive step:**
 - If A and B are regular expressions then so are:
 - $A \cup B$
 - AB
 - A^*
Base Case

- Case ε:

- Case a:
Base Case

- Case ε

- Case a
Base Case

- Case ε:

- Case a:

\[a \]
Inductive Hypothesis

• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B
Inductive Step

Case $A \cup B$:
Inductive Step

Case $A \cup B$:

\[N_A \]

\[N_B \]
Inductive Step

Case AB:

\[N_A \quad N_B \]
Inductive Step

Case AB:
Inductive Step

Case A*
Inductive Step

Case A*
Build an NFA for \((01 \cup 1)^* 0\)
Solution

\((01 \cup 1)^*0\)
The story so far...

![Diagram showing the relationship between REs, DFAs, CFGs, and NFAs]

- REs ⊆ CFGs
- DFAs ⊆ NFAs
NFAs and DFAs

Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?
NFAs and DFAs

Every DFA is an NFA
 – DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language
Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by \(x \) from the start state to some final state?

• Perfect guesser: The NFA has input \(x \) and whenever there is a choice of what to do it magically guesses a good one (if one exists)

• Parallel exploration: The NFA computation runs all possible computations on \(x \) step-by-step at the same time in parallel
Parallel Exploration view of an NFA

Input string 0101100
Conversion of NFAs to a DFAs

• Construction Idea:
 – The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far
 (Note: not all paths; all last states on those paths.)

 – There will be one state in the DFA for each \textit{subset} of states of the NFA that can be reached by some string
Conversion of NFAs to a DFAs

New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ε
Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - starting from some state in S, then
 - following one edge labeled by s, and
 - then following some number of edges labeled by ε
- T will be \emptyset if no edges from S labeled s exist
Conversion of NFAs to a DFAs

Final states for the DFA

– All states whose set contain some final state of the NFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA
Example: NFA to DFA

NFA

DFA
The story so far...

\[
\begin{align*}
\text{REs} \subseteq \text{CFGs} \\
\text{DFAs} = \text{NFAs}
\end{align*}
\]
Regular expressions \subseteq NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library

– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)
The story so far...

\[\text{REs} \subseteq \text{CFGs} \]

\[\text{DFAs} \cong \text{NFAs} \]

Is this \(\subseteq \) really “=” or “\(\not\subseteq \)”?
Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression that accepts the same language.

Corollary: A language is recognized by a DFA (or NFA) if and only if it has a regular expression.

You need to know these facts

- the construction for the Theorem is included in the slides after this, but you will not be tested on it.
The story so far...

\[\text{REs} \subseteq \text{CFGs} \]

\[\text{DFAs} = \text{NFAs} \]
The story so far...

Next time: Is this \subseteq really “=” or “\subsetneq”?