CSE 311: Foundations of Computing

Lecture 25: NFAs and their relation to REs & DFAs

* | Tawk You SHoulp Be
MORE EXPLICIT HERE IN STEP TwO."



Recall: DFAs

e States
* Transitions on input symbols
o Start state and final states

* The “language recognized” by the machine is the
set of strings that reach a final state from the start

Old State 0 1
S0 S0 S
51 S0 52
32 S0 53
53 53 53




Recall: DFAs

 Each machine designed for strings over some
fixed alphabet 2.

 Must have a transition defined from each state for
every symbol in 2.

Old State 0 1




Last Time: Nondeterministic Finite Automata (NFA)

 Graph with start state, final states, edges labeled
by symbols (like DFA) but

— Not required to have exactly 1 edge out of each state
labeled by each symbol— can have O or >1

— Also can have edges labeled by empty string ¢

* Definition: xis in the language recognized by an
NFA if and only if some valid execution of the
machine gets to an accept state

OO0 O
® e

0,1 0,1



Three ways of thinking about NFAs

* Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

* Qutside observer: Is there a path labeled by x from
the start state to some accepting state?

* Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel



Path Labels

Def: The label of path v,, v, ..., v, is the
concatenation of the labels of the edges

(V07 V1)7 (V17 V2), nany (vn-17 vn)

Example: The label of path s, s4, S,, Sg, Sp is 1100




Deterministic Finite Automata (DFA)

 Def: xis in the language recognized by an DFA if
and only if x labels a path from the start state to
some final state

 Pathyv,, v4, ..., v, With v, = s, and label x describes
a correct simulation of the DFA on input x

— i-th step must match the i-th character of x



Nondeterministic Finite Automata (NFA)

 Graph with start state, final states, edges labeled
by symbols (like DFA) but

— Not required to have exactly 1 edge out of each state
labeled by each symbol— can have O or >1

— Also can have edges labeled by empty string ¢
* Definition: xis in the language recognized by an

NFA if and only if x labels some path from the
start state to an accepting state

OO0 O
® e

0,1 0,1



Three ways of thinking about NFAs

* Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

* Qutside observer: Is there a path labeled by x from
the start state to some accepting state?

* Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel



Compare with the smallest DFA

0,1
Ef 1 C 0,1 e 0,1 e
S




Parallel Exploration view of an NFA

0,1
EE 1 C 0,1 . 0,1 .
S

Input string 0101100




Summary of NFAs

e Generalization of DFAs

— drop two restrictions of DFAs
— every DFA is an NFA

« Seem to be more powerful
— designing is easier than with DFAs

 Seem related to regular expressions



The story so far...

REs C CFGs

IN

DFAs NFAs



NFAs and regular expressions

Theorem: For any set of strings (language) A

described by a regular expression, there is an
NFA that recognizes A.

Proof idea: Structural induction based on the
recursive definition of regular expressions...



Regular Expressions over X

* Basis:
— € Is a regular expression
— a is a regular expression for any a € X

* Recursive step:
— If A and B are regular expressions then so are:
AUB
AB
A*



Base Case

e Case ¢:

e Case a:



Base Case

e Case ¢:

e Case a:



Base Case

e Case ¢:

e Case a:




Inductive Hypothesis

* Suppose that for some regular expressions
A and B there exist NFAs N, and Ny such

that N, recognizes the language given by A
and Ng recognizes the language given by B

0
0 0

O O

O




Inductive Step

Case A U B:




Inductive Step

Case A U B:




Inductive Step

Case AB:




Inductive Step

Case AB:




Inductive Step

Case A*




Inductive Step

Case A*




Build an NFA for (01 U1)*0




Solution

(01 U1)*0




The story so far...

IN

REs CFGs

DFAs C NFAs



NFAs and DFAs

Every DFA is an NFA
— DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA is an NFA
— DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recognizes exactly the same language




Three ways of thinking about NFAs

* Qutside observer: Is there a path labeled by x from
the start state to some final state?

* Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

* Parallel exploration: The NFA computation runs all

possible computations on x step-by-step at the same
time in parallel



Parallel Exploration view of an NFA

0,1
EE 1 C 0,1 . 0,1 .
S

Input string 0101100




Conversion of NFAs to a DFAs

 Construction ldea:

— The DFA keeps track of ALL states reachable in
the NFA along a path labeled by the input so far

(Note: not all paths; all last states on those paths.)

— There will be one state in the DFA for each
subset of states of the NFA that can be reached
by some string



Conversion of NFAs to a DFAs

New start state for DFA

— The set of all states reachable from the start
state of the NFA using only edges labeled €

NFA DFA



Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of

states of the NFA and each symbol s
— Add an edge labeled s to state corresponding to T, the

set of states of the NFA reached by
- starting from some state in S, then

- following one edge labeled by s, and
then following some number of edges labeled by €
— T will be @ if no edges from S labeled s exist




Conversion of NFAs to a DFAs

Final states for the DFA

— All states whose set contain some final state of
the NFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA

DFA



Example: NFA to DFA




Example: NFA to DFA




The story so far...

REs

IN

CFGs

DFAs NFAs



Regular expressions € NFAs = DFAs

We have shown how to build an optimal DFA for every
regular expression

— Build NFA
— Convert NFA to DFA using subset construction
— Minimize resulting DFA

Thus, we could now implement a RegExp library
— most RegExp libraries actually simulate the NFA

— (even better: one can combine the two approaches:
apply DFA minimization lazily while simulating the NFA)



The story so far...

REs

IN

CFGs

DFAs

NFAs

s this € really “=" or “€"?



Regular expressions = NFAs = DFAs

Theorem: For any NFA, there is a regular expression
that accepts the same language

Corollary: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know these facts

— the construction for the Theorem is included in the slides
after this, but you will not be tested on it



The story so far...

REs C CFGs

DFAs

NFAs



The story so far...

REs C CFGs

DFAs NFAs

Next time: Is this € really “=” or “&"?




