
CSE 311: Foundations of Computing

Lecture 25:  NFAs and their relation to REs & DFAs



Recall: DFAs

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the 

set of strings that reach a final state from the start
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Recall: DFAs

• Each machine designed for strings over some 
fixed alphabet Σ.

• Must have a transition defined from each state for 
every symbol in Σ.
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Last Time: Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition:  x is in the language recognized by an 
NFA if and only if some valid execution of the 
machine gets to an accept state
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Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Outside observer:  Is there a path labeled by x from 
the start state to some accepting state?  

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel



Path Labels

Def: The label of path v0, v1, ..., vn is the
concatenation of the labels of the edges
(v0, v1), (v1, v2), …, (vn-1, vn)

Example: The label of path s0, s1, s2, s0, s0 is 1100
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Deterministic Finite Automata (DFA)

• Def:  x is in the language recognized by an DFA if 
and only if x labels a path from the start state to 
some final state

• Path v0, v1, ..., vn with v0 = s0 and label x describes 
a correct simulation of the DFA on input x
– i-th step must match the i-th character of x
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Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition:  x is in the language recognized by an 
NFA if and only if x labels some path from the 
start state to an accepting state

s0 s2 s3s1
111

0,10,1



Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Outside observer:  Is there a path labeled by x from 
the start state to some accepting state?  

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel
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Parallel Exploration view of an NFA
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Summary of NFAs

• Generalization of DFAs
– drop two restrictions of DFAs
– every DFA is an NFA

• Seem to be more powerful
– designing is easier than with DFAs

• Seem related to regular expressions



The story so far...
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Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is an 
NFA that recognizes 𝐴.  

Proof idea:   Structural induction based on the 
recursive definition of regular expressions...

NFAs and regular expressions



Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

A È B
AB
A*



• Case ɛ:

• Case a:

Base Case



• Case ɛ:

• Case a:

Base Case



• Case ɛ:

• Case a:

Base Case

a



Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such 
that NA recognizes the language given by A 
and NB recognizes the language given by B

NA NB



Inductive Step

Case AÈ B:

NA

NB



Inductive Step

Case AÈ B:
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Inductive Step

Case AB:

NA NB



Inductive Step

Case AB:
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Inductive Step

Case A*

NA



Inductive Step

Case A*
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Build an NFA for (01 È1)*0



Solution

(01 È1)*0

0
ɛ

ɛ

ɛ

ɛ

0

1

1

ɛ

ɛ

ɛ

ɛ

ɛ



The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

⊆



NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  For every NFA there is a DFA that 
recognizes exactly the same language



Three ways of thinking about NFAs

• Outside observer:  Is there a path labeled by x from 
the start state to some final state?  

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel
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Conversion of NFAs to a DFAs

• Construction Idea:
– The DFA keeps track of ALL states reachable in 

the NFA along a path labeled by the input so far
(Note: not all paths; all last states on those paths.)

– There will be one state in the DFA for each 
subset of states of the NFA that can be reached 
by some string



Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start 

state of the NFA using only edges labeled ɛ
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Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of 
states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the 

set of states of the NFA reached by 
· starting from some state in S, then
· following one edge labeled by s, and
then following some number of edges labeled by ɛ

– T will be Æ if no edges from S labeled s exist
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Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of 

the NFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

Æ

10



Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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The story so far...
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Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

apply DFA minimization lazily while simulating the NFA)



The story so far...
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Is this ⊆ really “=” or “⊊”?



Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression
that accepts the same language

Corollary:  A language is recognized by a DFA (or NFA) 
if and only if it has a regular expression

You need to know these facts
– the construction for the Theorem is included in the slides 

after this, but you will not be tested on it



The story so far...
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The story so far...
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Next time:  Is this ⊆ really “=” or “⊊”?


