
CSE 311: Foundations of Computing

Lecture 25: NFAs and their relation to REs & DFAs

Recall: DFAs

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the

set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

0Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Recall: DFAs

• Each machine designed for strings over some
fixed alphabet Σ.

• Must have a transition defined from each state for
every symbol in Σ.

s0 s2 s3s1
111

0,1

0

0

0

Last Time: Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an
NFA if and only if some valid execution of the
machine gets to an accept state

s0 s2 s3s1
111

0,10,1

Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Outside observer: Is there a path labeled by x from
the start state to some accepting state?

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

Path Labels

Def: The label of path v0, v1, ..., vn is the
concatenation of the labels of the edges
(v0, v1), (v1, v2), …, (vn-1, vn)

Example: The label of path s0, s1, s2, s0, s0 is 1100

s0 s2 s3s1
111

0,1

0

0

Deterministic Finite Automata (DFA)

• Def: x is in the language recognized by an DFA if
and only if x labels a path from the start state to
some final state

• Path v0, v1, ..., vn with v0 = s0 and label x describes
a correct simulation of the DFA on input x
– i-th step must match the i-th character of x

s0 s2 s3s1
111

0,1

0

0

0

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an
NFA if and only if x labels some path from the
start state to an accepting state

s0 s2 s3s1
111

0,10,1

Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Outside observer: Is there a path labeled by x from
the start state to some accepting state?

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11

0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3

0 1 0 1 1 0 0
s3

s1

s3

s2

s3

s0

s1

s3

s0

s2

s3 s3

s0

X

s3

s1

s2

X

Summary of NFAs

• Generalization of DFAs
– drop two restrictions of DFAs
– every DFA is an NFA

• Seem to be more powerful
– designing is easier than with DFAs

• Seem related to regular expressions

The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is an
NFA that recognizes 𝐴.

Proof idea: Structural induction based on the
recursive definition of regular expressions...

NFAs and regular expressions

Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

A È B
AB
A*

• Case ɛ:

• Case a:

Base Case

• Case ɛ:

• Case a:

Base Case

• Case ɛ:

• Case a:

Base Case

a

Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such
that NA recognizes the language given by A
and NB recognizes the language given by B

NA NB

Inductive Step

Case AÈ B:

NA

NB

Inductive Step

Case AÈ B:

ɛ

ɛ

NA

NB

Inductive Step

Case AB:

NA NB

Inductive Step

Case AB:

ɛ

ɛ

NA NB

Inductive Step

Case A*

NA

Inductive Step

Case A*

ɛ

ɛ

ɛ
NA

Build an NFA for (01 È1)*0

Solution

(01 È1)*0

0
ɛ

ɛ

ɛ

ɛ

0

1

1

ɛ

ɛ

ɛ

ɛ

ɛ

The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

⊆

NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recognizes exactly the same language

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from
the start state to some final state?

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3 s3 s3 s3 s3 s3 s3

0 1 0 1 1 0 0

s2 s1 s0

s2 s1 s0

s2 s1 s0

s3

X

X

Conversion of NFAs to a DFAs

• Construction Idea:
– The DFA keeps track of ALL states reachable in

the NFA along a path labeled by the input so far
(Note: not all paths; all last states on those paths.)

– There will be one state in the DFA for each
subset of states of the NFA that can be reached
by some string

Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start

state of the NFA using only edges labeled ɛ

a,b,e,f

f

e

ba
ɛ

ɛ

ɛ

NFA DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of
states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the

set of states of the NFA reached by
· starting from some state in S, then
· following one edge labeled by s, and
then following some number of edges labeled by ɛ

– T will be Æ if no edges from S labeled s exist

f

e

b

ɛ

ɛ
c

d

g
ɛ

1

1

1

1

b,e,f c,d,e,g1

Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of

the NFA

a,b,c,e
ce

ba

NFA DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Æ

10

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Æ

1

0,1

0

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1

1
0

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

apply DFA minimization lazily while simulating the NFA)

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Is this ⊆ really “=” or “⊊”?

Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression
that accepts the same language

Corollary: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know these facts
– the construction for the Theorem is included in the slides

after this, but you will not be tested on it

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=
Next time: Is this ⊆ really “=” or “⊊”?

