CSE 311: Foundations of Computing

Lecture 25: NFAs and their relation to REs & DFAs

Recall: DFAs

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
s ₀	S ₀	S ₁
s ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

Recall: DFAs

 Each machine designed for strings over some fixed alphabet Σ.

 Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
s ₀	S ₀	S ₁
S ₁	S ₀	s ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

Last Time: Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if <u>some</u> valid execution of the machine gets to an accept state

Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Outside observer: Is there a path labeled by x from the start state to some accepting state?
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Path Labels

Def: The label of path v_0 , v_1 , ..., v_n is the concatenation of the labels of the edges $(v_0, v_1), (v_1, v_2), ..., (v_{n-1}, v_n)$

Example: The label of path s_0 , s_1 , s_2 , s_0 , s_0 is 1100

Deterministic Finite Automata (DFA)

 Def: x is in the language recognized by an DFA if and only if x labels a path from the start state to some final state

- Path v_0 , v_1 , ..., v_n with $v_0 = s_0$ and label x describes a correct simulation of the DFA on input x
 - i-th step must match the i-th character of x

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if x labels some path from the start state to an accepting state

Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Outside observer: Is there a path labeled by x from the start state to some accepting state?
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Compare with the smallest DFA

Parallel Exploration view of an NFA

Input string 0101100

Summary of NFAs

- Generalization of DFAs
 - drop two restrictions of DFAs
 - every DFA is an NFA
- Seem to be more powerful
 - designing is easier than with DFAs

Seem related to regular expressions

The story so far...

DFAs ⊆ NFAs

NFAs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
 - $-\epsilon$ is a regular expression
 - -a is a regular expression for any a ∈ Σ
- Recursive step:
 - If A and B are regular expressions then so are:

 $A \cup B$

AB

A*

Base Case

• Case ε:

• Case a:

Base Case

• Case ε:

• Case a:

Base Case

• Case ε:

• Case a:

Inductive Hypothesis

• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B

Case $A \cup B$:

 N_A

 N_{B}

Case AB:

Case AB:

Case A*

Case A*

Build an NFA for (01 \cup 1)*0

Solution

(01 ∪1)*0

The story so far...

NFAs and DFAs

Every DFA is an NFA

DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Parallel Exploration view of an NFA

Input string 0101100

- Construction Idea:
 - The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far

(Note: not all paths; all last states on those paths.)

 There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ϵ

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - · starting from some state in S, then
 - · following one edge labeled by s, and then following some number of edges labeled by ε
- T will be Ø if no edges from S labeled s exist

Final states for the DFA

 All states whose set contain some final state of the NFA

RES \subseteq CFGs

DFAS = NFAS

Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)

RES
$$\subseteq$$
 CFGs

DFAS = NFAS

Is this \subseteq really "=" or " \subsetneq "?

Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression that accepts the same language

Corollary: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know these facts

 the construction for the Theorem is included in the slides after this, but you will not be tested on it

RES
$$\subseteq$$
 CFGs

II

DFAS $=$ NFAS

<u>Next time</u>: Is this \subseteq really "=" or " \subsetneq "?