
CSE 311: Foundations of Computing

Lecture 22: Relations and Directed Graphs

Last time: Languages — REs and CFGs

Saw two new ways of defining languages
• Regular Expressions (0 È 1)* 0110 (0 È 1)*
– easy to understand (declarative)

• Context-free Grammars S ® SS | 0S1 | 1S0 | e
– more expressive
– (≈ recursively-defined sets)

We will connect these to machines shortly.
But first, we need some new math terminology….

Alternative Set Notation

We defined Cartesian Product as

Alternative notation for this is

“The set of all (a, b) such that a ∈ A and b ∈ B”

𝐴×𝐵 ∷= {𝑥 ∶ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵 (𝑥 = (𝑎, 𝑏)) }

𝐴×𝐵 ∷= {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Relations

Let A and B be sets,
A binary relation from A to B is a subset of A ´ B

Let A be a set,
A binary relation on A is a subset of A ´ A

Relations You Already Know

≥ on ℕ
That is: {(x,y) : x ≥ y and x, y Î ℕ}

< on ℝ
That is: {(x,y) : x < y and x, y Îℝ}

= on ∑*
That is: {(x,y) : x = y and x, y Î ∑*}

⊆ on 𝓟(U) for universe U
That is: {(A,B) : A ⊆ B and A, B Î𝓟(U)}

More Relation Examples

R1 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) : x ≡5 y }

R3 = {(c1, c2) : c1 is a prerequisite of c2 }

R4 = {(s, c) : student s has taken course c }

Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b,a) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

R is transitive iff (a,b)Î R and (b,c)Î R implies (a,c) Î R

Which relations have which properties?

≥ on ℕ	:		
< on ℝ	:		
= on ∑*	:	
⊆ on 𝓟(U):
R2 = {(x, y) : x ≡5 y}:
R3 = {(c1, c2) : c1 is a prerequisite of c2 }:

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Which relations have which properties?

≥ on ℕ	:		Reflexive, Antisymmetric, Transitive
< on ℝ	:		Antisymmetric, Transitive
= on ∑*	:	Reflexive, Symmetric, Antisymmetric, Transitive

⊆ on 𝓟(U): Reflexive, Antisymmetric, Transitive
R2 = {(x, y) : x ≡5 y}: Reflexive, Symmetric, Transitive
R3 = {(c1, c2) : c1 is a prerequisite of c2 }: Antisymmetric

R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Combining Relations

Let 𝑹 be a relation from 𝑨 to 𝑩.
Let 𝑺 be a relation from 𝑩 to 𝑪.

The composition of 𝑹 and 𝑺, 𝑹 ∘ 𝑺 is the relation
from 𝑨 to 𝑪 defined by:

𝑹 ∘ 𝑺 = {(a, c) : $ b such that (a, b) Î 𝑹 and (b, c) Î 𝑺}

Intuitively, a pair is in the composition if there is a
“connection” from the first to the second.

Examples

(a,b) Î Parent iff b is a parent of a
(a,b) Î Sister iff b is a sister of a

When is (x,y) Î Parent ∘ Sister?

When is (x,y) Î Sister ∘ Parent?

R ∘ S = {(a, c) : $ b such that (a,b)Î R and (b,c)Î S}

Examples

Using only the relations Parent, Child, Father,
Son, Brother, Sibling, Husband

and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Powers of a Relation

𝑹𝟐 ∷= 𝑹 ∘ 𝑹
= { 𝒂, 𝒄 ∶ ∃𝒃 such that 𝒂, 𝒃 ∈ 𝑹 and 𝒃, 𝒄 ∈ 𝑹 }

𝑹𝟎 ∷= { 𝒂, 𝒂 ∶ 𝒂 ∈ 𝑨} “the equality relation on 𝑨”

𝑹𝒏$𝟏 ∷= 𝑹𝒏 ∘ 𝑹 for 𝒏 ≥ 𝟎

e.g., 𝑹𝟏 = 𝑹𝟎 ∘ 𝑹 = 𝑹
𝑹𝟐 = 𝑹𝟏 ∘ 𝑹 = 𝑹 ∘ 𝑹

Non-constructive Definitions

Recursively defined sets and functions describe these
objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

How can we define functions non-constructively?
– (useful for writing a function specification)

S = {x : P(x)}

Functions

A function 𝑓 ∶ 𝐴 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

I.e., for every input 𝑎 ∈ 𝐴, there is one output 𝑏 ∈ 𝐵.
We denote this 𝑏 by 𝑓(𝑎).

(When attempting to define a function this way, we sometimes say
the function is “well defined” if the exactly one part holds)

Functions

A function 𝑓 ∶ 𝐴 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

Ex: {((a, b), d) : d is the largest integer dividing a and b}

• gcd : ℕ×ℕ → ℕ
• defined without knowing how to compute it

Matrix Representation

Relation 𝑹 on 𝑨 = {𝑎!, … , 𝑎"}

{ (1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) }

1 2 3 4

1 1 1 0 1

2 1 0 1 0

3 0 1 1 0

4 0 1 1 0

𝒎𝒊𝒋 =
1 if 𝑎% , 𝑎& ∈ 𝑹
0 if 𝑎% , 𝑎& ∉ 𝑹

Directed Graphs

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

𝑎, 𝑐 ∈ 𝑅 ∘ 𝑅 = 𝑅! iff ∃𝑏 (𝑎, 𝑏 ∈ 𝑅 ⋀ (𝑏, 𝑐) ∈ 𝑅)
iff ∃𝑏 such that a, b, c is a path

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

𝑎, 𝑐 ∈ 𝑅 ∘ 𝑅 = 𝑅! iff ∃𝑏 (𝑎, 𝑏 ∈ 𝑅 ⋀ (𝑏, 𝑐) ∈ 𝑅)
iff ∃𝑏 such that a, b, c is a path

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

Special case: 𝑹 ∘ 𝑹 is paths of length 2.

• 𝑹 is paths of length 1
• 𝑹𝟎 is paths of length 0 (can’t go anywhere)
• 𝑹𝟑 = 𝑹𝟐 ∘ 𝑹 etc, so is 𝑹𝒏 paths of length n

