CSE 311: Foundations of Computing

Lecture 22: Relations and Directed Graphs

Last time: Languages — REs and CFGs

Saw two new ways of defining languages

- Regular Expressions $(0 \cup 1)* 0110 (0 \cup 1)*$
 - easy to understand (declarative)
- Context-free Grammars $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$
 - more expressive
 - (≈ recursively-defined sets)

We will connect these to machines shortly.

But first, we need some new math terminology....

Alternative Set Notation

We defined Cartesian Product as

$$A \times B ::= \{x : \exists a \in A, \exists b \in B \ (x = (a, b)) \}$$

Alternative notation for this is

$$A \times B ::= \{(a,b) : a \in A, b \in B\}$$

"The set of all (a, b) such that $a \in A$ and $b \in B$ "

Relations

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

Relations You Already Know

```
\geq on \mathbb{N}
    That is: \{(x,y) : x \ge y \text{ and } x, y \in \mathbb{N}\}
< on \mathbb{R}
    That is: \{(x,y): x < y \text{ and } x, y \in \mathbb{R}\}
= on \Sigma^*
    That is: \{(x,y) : x = y \text{ and } x, y \in \Sigma^*\}
\subseteq on \mathcal{P}(\mathsf{U}) for universe \mathsf{U}
    That is: \{(A,B) : A \subseteq B \text{ and } A, B \in \mathcal{P}(U)\}
```

More Relation Examples

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$R_2 = \{(x, y) : x \equiv_5 y \}$$

$$\mathbf{R}_3 = \{(\mathbf{c}_1, \mathbf{c}_2) : \mathbf{c}_1 \text{ is a prerequisite of } \mathbf{c}_2 \}$$

$$R_4 = \{(s, c) : student s has taken course c \}$$

Properties of Relations

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b,a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

Which relations have which properties?

```
\geq on \mathbb{N}:

< on \mathbb{R}:

= on \Sigma^*:

\subseteq on \mathcal{P}(U):

\mathbf{R}_2 = \{(x, y) : x \equiv_5 y\}:

\mathbf{R}_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}:
```

```
R is reflexive iff (a,a) \in R for every a \in A
R is symmetric iff (a,b) \in R implies (b,a) \in R
R is antisymmetric iff (a,b) \in R and a \neq b implies (b,a) \notin R
R is transitive iff (a,b) \in R and (b,c) \in R implies (a,c) \in R
```

Which relations have which properties?

```
\geq on \mathbb{N}: Reflexive, Antisymmetric, Transitive < on \mathbb{R}: Antisymmetric, Transitive = on \Sigma^*: Reflexive, Symmetric, Antisymmetric, Transitive \subseteq on \mathcal{P}(U): Reflexive, Antisymmetric, Transitive R_2 = \{(x, y) : x \equiv_5 y\}: Reflexive, Symmetric, Transitive R_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}: Antisymmetric
```

```
R is reflexive iff (a,a) \in R for every a \in A
R is symmetric iff (a,b) \in R implies (b,a) \in R
R is antisymmetric iff (a,b) \in R and a \neq b implies (b,a) \notin R
R is transitive iff (a,b) \in R and (b,c) \in R implies (a,c) \in R
```

Combining Relations

Let R be a relation from A to B. Let S be a relation from B to C.

The composition of R and S, $R \circ S$ is the relation from A to C defined by:

$$R \circ S = \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

Examples

 $(a,b) \in Parent iff b is a parent of a$

 $(a,b) \in Sister$ iff b is a sister of a

When is $(x,y) \in Parent \circ Sister$?

When is $(x,y) \in Sister \circ Parent?$

 $R \circ S = \{(a, c) : \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

Examples

Using only the relations Parent, Child, Father, Son, Brother, Sibling, Husband and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Powers of a Relation

$$R^2 ::= R \circ R$$

= $\{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in R \}$

$$R^0 ::= \{(a,a): a \in A\}$$
 "the equality relation on A " $R^{n+1} ::= R^n \circ R$ for $n \geq 0$

e.g.,
$$R^1 = R^0 \circ R = R$$

 $R^2 = R^1 \circ R = R \circ R$

Non-constructive Definitions

Recursively defined sets and functions describe these objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

$$S = \{x : P(x)\}$$

How can we define functions non-constructively?

(useful for writing a function specification)

Functions

A function $f: A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

I.e., for every input $a \in A$, there is one output $b \in B$. We denote this b by f(a).

(When attempting to define a function this way, we sometimes say the function is "well defined" if the *exactly one* part holds)

Functions

A function $f: A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

Ex: {((a, b), d) : d is the largest integer dividing a and b}

- $gcd: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- defined without knowing how to compute it

Matrix Representation

Relation \mathbf{R} on $\mathbf{A} = \{a_1, \dots, a_p\}$

$$\boldsymbol{m_{ij}} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \boldsymbol{R} \\ 0 & \text{if } (a_i, a_j) \notin \boldsymbol{R} \end{cases}$$

 $\{(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3)\}$

	1	2	3	4
1	1	1	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	1	0

$$G = (V, E)$$
 $V - vertices$ $E - edges$ (relation on vertices)

G = (V, E) V - verticesE - edges (relation on vertices)

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E


```
G = (V, E)  V - vertices
 E - edges  (relation on vertices)
```

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of $\mathbf{v_0}$, ..., $\mathbf{v_k}$ repeated

Cycle: $v_0 = v_k$

Simple Čycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated


```
G = (V, E)  V - vertices  E - edges  (relation on vertices)
```

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of $\mathbf{v_0}$, ..., $\mathbf{v_k}$ repeated

Cycle: $v_0 = v_k$

Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated


```
G = (V, E)  V - vertices  E - edges  (relation on vertices)
```

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of $\mathbf{v_0}$, ..., $\mathbf{v_k}$ repeated

Cycle: $v_0 = v_k$

Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated

Representation of Relations

Directed Graph Representation (Digraph)

Representation of Relations

Directed Graph Representation (Digraph)

If $S = \{(2,2), (2,3), (3,1)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $R \circ S$

If $S = \{(2,2), (2,3), (3,1)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $R \circ S$

If $R = \{(1,2), (2,1), (1,3)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $R \circ R$

$$(a,c) \in R \circ R = R^2$$
 iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b \ \text{such that a, b, c is a path}$

If $R = \{(1,2), (2,1), (1,3)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $R \circ R$

 $(a,c) \in R \circ R = R^2$ iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b \ \text{such that a, b, c is a path}$

If $R = \{(1,2), (2,1), (1,3)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $R \circ R$

Special case: $R \circ R$ is paths of length 2.

- R is paths of length 1
- R⁰ is paths of length 0 (can't go anywhere)
- $R^3 = R^2 \circ R$ etc, so is R^n paths of length n