CSE 311: Foundations of Computing

Lecture 22: Relations and Directed Graphs

Last time: Languages - REs and CFGs

Saw two new ways of defining languages

- Regular Expressions $(0 \cup 1) * 0110(0 \cup 1) *$
- easy to understand (declarative)
- Context-free Grammars $\quad \mathbf{S} \rightarrow \mathbf{S S} \mid$ OS1 | 1S0 | ε
- more expressive
- (\approx recursively-defined sets)

We will connect these to machines shortly.
But first, we need some new math terminology....

Alternative Set Notation

We defined Cartesian Product as

$$
A \times B::=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

Alternative notation for this is

$$
A \times B::=\{(a, b): a \in A, b \in B\}
$$

"The set of all (a, b) such that $a \in A$ and $b \in B "$

Relations

Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Let A be a set, A binary relation on A is a subset of $A \times A$

Relations You Already Know

\geq on \mathbb{N}
That is: $\{(x, y): x \geq y$ and $x, y \in \mathbb{N}\}$
< on \mathbb{R}
That is: $\{(x, y): x<y$ and $x, y \in \mathbb{R}\}$
$=$ on \sum^{*}
That is: $\left\{(x, y): x=y\right.$ and $\left.x, y \in \sum^{*}\right\}$
\subseteq on $\mathcal{P}(\mathrm{U})$ for universe U
That is: $\{(A, B): A \subseteq B$ and $A, B \in \mathcal{P}(U)\}$

More Relation Examples

$$
\begin{aligned}
& \mathbf{R}_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& \mathbf{R}_{2}=\left\{(x, y): x \equiv_{5} y\right\} \\
& \mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1} \text { is a prerequisite of } c_{2}\right\} \\
& \mathbf{R}_{4}=\{(\mathrm{s}, \mathrm{c}): \text { student } s \text { has taken course } c\}
\end{aligned}
$$

Properties of Relations

Let R be a relation on A .
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} :
$<$ on \mathbb{R} :
$=$ on Σ^{*} :
\subseteq on $\mathcal{P}(\mathrm{U}):$
$R_{2}=\left\{(x, y): x \bar{E}_{5} y\right\}:$
$\mathbf{R}_{3}=\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right): \mathrm{c}_{1}\right.$ is a prerequisite of $\left.\mathrm{c}_{2}\right\}$:
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
< on \mathbb{R} : Antisymmetric, Transitive
$=$ on Σ^{*} : Reflexive, Symmetric, Antisymmetric, Transitive
\subseteq on $\mathcal{P}(\mathrm{U})$: Reflexive, Antisymmetric, Transitive
$\mathbf{R}_{\mathbf{2}}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \equiv_{5} \mathrm{y}\right\}$: Reflexive, Symmetric, Transitive
$R_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1}\right.$ is a prerequisite of $\left.c_{2}\right\}$: Antisymmetric
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Combining Relations

Let R be a relation from A to B.
Let S be a relation from B to C.

The composition of R and $S, R \circ S$ is the relation from A to C defined by:
$R \circ S=\{(\mathrm{a}, \mathrm{c}): \exists \mathrm{b}$ such that $(\mathrm{a}, \mathrm{b}) \in R$ and $(\mathrm{b}, \mathrm{c}) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

Examples

$(a, b) \in$ Parent iff b is a parent of a
$(a, b) \in$ Sister iff b is a sister of a

When is $(x, y) \in$ Parent \circ Sister?

When is $(x, y) \in$ Sister \circ Parent?

$$
R \circ S=\{(a, c): \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in S\}
$$

Examples

Using only the relations Parent, Child, Father, Son, Brother, Sibling, Husband and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Powers of a Relation

$$
\begin{aligned}
& R^{2}::=R \circ R \\
& \quad=\{(a, c): \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in R\} \\
& R^{0} \quad::=\{(a, a): a \in A\} \quad \text { "the equality relation on } A^{\prime \prime} \\
& R^{n+1}::=R^{n} \circ R \quad \text { for } n \geq \mathbf{0} \\
&
\end{aligned} \quad \begin{aligned}
\text { e.g., } R^{1}=R^{0} \circ R=R \\
R^{2}=R^{1} \circ R=R \circ R
\end{aligned}
$$

Non-constructive Definitions

Recursively defined sets and functions describe these objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

$$
S=\{x: P(x)\}
$$

How can we define functions non-constructively?

- (useful for writing a function specification)

Functions

A function $f: A \rightarrow B$ (A as input and B as output) is a special type of relation.

A function f from A to B is a relation from A to B such that: for every $a \in A$, there is exactly one $b \in B$ with $(a, b) \in f$
I.e., for every input $a \in A$, there is one output $b \in B$. We denote this b by $f(a)$.
(When attempting to define a function this way, we sometimes say the function is "well defined" if the exactly one part holds)

Functions

A function $f: A \rightarrow B$ (A as input and B as output) is a special type of relation.

A function f from A to B is a relation from A to B such that: for every $a \in A$, there is exactly one $b \in B$ with $(a, b) \in f$

Ex: $\{((a, b), d)$: d is the largest integer dividing a and $b\}$

- gcd: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- defined without knowing how to compute it

Matrix Representation

Relation \boldsymbol{R} on $\boldsymbol{A}=\left\{a_{1}, \ldots, a_{p}\right\}$

$$
\begin{gathered}
\boldsymbol{m}_{\boldsymbol{i j}}= \begin{cases}1 & \text { if }\left(a_{i}, a_{j}\right) \in \boldsymbol{R} \\
0 & \text { if }\left(a_{i}, a_{j}\right) \notin \boldsymbol{R}\end{cases} \\
\{(1, \mathbf{1}),(1,2),(1,4),(2,1),(2,3),(3,2),(3,3),(4,2),(4,3)\} \\
\qquad \begin{array}{|l|l|l|l|l|}
\\
\hline \mathbf{1} & 1 & \mathbf{2} & \mathbf{3} & \mathbf{4} \\
\hline \mathbf{2} & 1 & 1 & 0 & 1 \\
\hline \mathbf{3} & 0 & 1 & 1 & 0 \\
\hline \mathbf{4} & 0 & 1 & 1 & 0
\end{array}
\end{gathered}
$$

Directed Graphs

$$
\begin{array}{ll}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) & \mathrm{V}-\text { vertices } \\
\mathrm{E}-\text { edges } & \text { (relation on vertices) }
\end{array}
$$

Directed Graphs

$$
\begin{array}{ll}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) & \mathrm{V}-\text { vertices } \\
\mathrm{E}-\text { edges } & \text { (relation on vertices) }
\end{array}
$$

Path: $v_{0}, v_{1}, \ldots, v_{k}$ with each $\left(v_{i}, v_{i+1}\right)$ in E

Directed Graphs

$G=(V, E) \quad \begin{array}{ll}V-\text { vertices } & \\ & E-\text { edges }\end{array}$
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{0}, \ldots, v_{k}$ repeated
Cycle: $\mathbf{v}_{0}=\mathbf{v}_{\mathbf{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$G=(V, E) \quad \begin{array}{ll}V-\text { vertices } & \\ & E-\text { edges }\end{array}$
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated
Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$G=(V, E) \quad \begin{array}{ll}V-\text { vertices } & \\ & E-\text { edges }\end{array}$
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated
Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ Compute $\boldsymbol{R} \circ \boldsymbol{S}$

Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ Compute $\boldsymbol{R} \circ \boldsymbol{S}$

2

3

Relational Composition using Digraphs

If $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ Compute $\boldsymbol{R} \circ \boldsymbol{R}$

2

3

$$
\begin{aligned}
(a, c) \in R \circ R=R^{2} & \text { iff } \exists b((a, b) \in R \wedge(b, c) \in R) \\
& \text { iff } \exists b \text { such that } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { is a path }
\end{aligned}
$$

Relational Composition using Digraphs

$$
\text { If } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\} \text { and } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}
$$

Compute $\boldsymbol{R} \circ \boldsymbol{R}$

$$
(a, c) \in R \circ R=R^{2}
$$

iff $\exists b((a, b) \in R \wedge(b, c) \in R)$
iff $\exists b$ such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is a path

Relational Composition using Digraphs

$$
\text { If } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\} \text { and } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}
$$

Compute $\boldsymbol{R} \circ \boldsymbol{R}$

Special case: $R \circ R$ is paths of length 2.

- R is paths of length 1
- R^{0} is paths of length 0 (can't go anywhere)
- $R^{3}=R^{2} \circ R$ etc, so is R^{n} paths of length n

