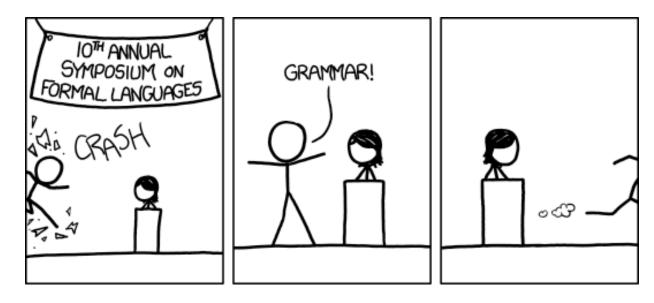
CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars



[Audience looks around]

"What is going on? There must be some context we're missing"

Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
 - Alphabet Σ of *terminal symbols* that can't be replaced
 - A finite set V of variables that can be replaced
 - One variable, usually S, is called the start symbol
- The substitution rules involving a variable A, written as

$$\mathbf{A} \rightarrow \mathbf{w}_1 \mid \mathbf{w}_2 \mid \cdots \mid \mathbf{w}_k$$

where each w_i is a string of variables and terminals

- that is $w_i \in (\mathbf{V} \cup \mathbf{\Sigma})^*$

How CFGs generate strings

- Begin with "S"
- If there is some variable A in the current string,
 you can replace it by one of the w's in the rules for A
 - $A \rightarrow W_1 \mid W_2 \mid \cdots \mid W_k$
 - Write this as $xAy \Rightarrow xwy$
 - Repeat until no variables left
- The set of strings the CFG describes are all strings, containing no variables, that can be generated in this manner after a finite number of steps

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

Example: $S \rightarrow 0S \mid S1 \mid \epsilon$

0*1*

Example:
$$S \rightarrow 0S \mid S1 \mid \epsilon$$

Example:
$$S \to 0S0 | 1S1 | 0 | 1 | \epsilon$$

Example:
$$S \rightarrow 0S \mid S1 \mid \epsilon$$

Example:
$$S \to 0S0 | 1S1 | 0 | 1 | \epsilon$$

The set of all binary palindromes

Grammar for $\{0^n 1^n : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

Grammar for $\{0^n 1^n : n \ge 0\}$

(i.e., matching 0*1* but with same number of 0's and 1's)

$$S \rightarrow 0S1 \mid \epsilon$$

Grammar for
$$\{0^n1^n : n \ge 0\}$$

(i.e., matching 0*1* but with same number of 0's and 1's)

$$S \rightarrow 0S1 \mid \epsilon$$

Grammar for
$$\{0^n 1^{2n} : n \ge 0\}$$

Grammar for
$$\{0^n 1^n : n \ge 0\}$$

(i.e., matching 0*1* but with same number of 0's and 1's)

$$S \rightarrow 0S1 \mid \epsilon$$

Grammar for
$$\{0^n 1^{2n} : n \ge 0\}$$

$$S \rightarrow 0S11 \mid \epsilon$$

Grammar for
$$\{0^n 1^n : n \ge 0\}$$

(i.e., matching 0*1* but with same number of 0's and 1's)

$$S \rightarrow 0S1 \mid \epsilon$$

Grammar for $\{0^n 1^{n+1} 0 : n \ge 0\}$

Grammar for
$$\{0^n 1^n : n \ge 0\}$$

(i.e., matching 0*1* but with same number of 0's and 1's)

$$S \rightarrow 0S1 \mid \epsilon$$

Grammar for
$$\{0^n 1^{n+1} 0 : n \ge 0\}$$

$$S \rightarrow A10$$

$$A \rightarrow 0A1 \mid \epsilon$$

Example: $S \rightarrow (S) \mid SS \mid \epsilon$

Example: $S \rightarrow (S) \mid SS \mid \varepsilon$

The set of all strings of matched parentheses

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

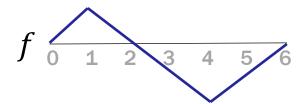
$$S \rightarrow SS \mid OS1 \mid 1S0 \mid \epsilon$$

Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

$$S \rightarrow SS \mid OS1 \mid 1S0 \mid \epsilon$$

Let $x \in \{0,1\}^*$. Define $f_x(k)$ to be #0s – #1s in the first k characters of x.

E.g., for
$$x = 011100$$



Binary strings with equal numbers of 0s and 1s (not just 0ⁿ1ⁿ, also 0101, 0110, etc.)

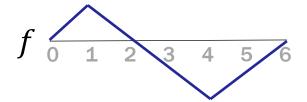
$$S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$$

Let $x \in \{0,1\}^*$. Define $f_x(k)$ to be #0s – #1s in the first k characters of x.

If k-th character is 0, then $f_x(k) = f_x(k-1) + 1$ If k-th character is 1, then $f_x(k) = f_x(k-1) - 1$

Let $x \in (0 \cup 1)^*$. Define $f_x(k)$ to be the number 0s minus the number of 1s in the k characters of x.

E.g., for
$$x = 011100$$



 $f_x(k) = 0$ when first k characters have #0s = #1s

– starts out at 0

$$f_{\chi}(0)=0$$

– ends at 0

$$f_{\chi}(n)=0$$

Three possibilities for $f_x(\mathbf{k})$ for $k \in \{1, ..., n-1\}$

• $f_{\chi}(k) > 0$ for all such k

$$S \rightarrow 0S1$$

$$S \rightarrow 1S0$$

• $f_x(k) = 0$ for some such k

$$S \rightarrow SS$$

Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E \times E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Generate (2*x) + y

Simple Arithmetic Expressions

$$E \rightarrow E + E \mid E \times E \mid (E) \mid x \mid y \mid z \mid 0 \mid 1 \mid 2 \mid 3 \mid 4$$

 $\mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

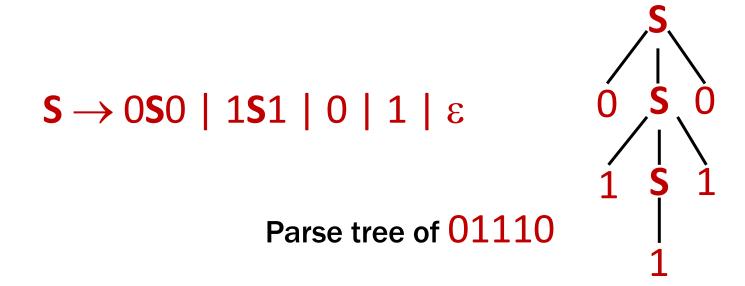
Generate (2*x) + y

$$E \Rightarrow E+E \Rightarrow (E)+E \Rightarrow (E*E)+E \Rightarrow (2*E)+E \Rightarrow (2*x)+E \Rightarrow (2*x)+y$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
 - Root labeled S (start symbol of G)
 - The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
 - The symbols of x label the leaves ordered left-to-right



Two ways to Define Binary Palindromes

Recursively-Defined Set

Basis:

 ε is a palindrome any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

$$S \rightarrow 0S0 | 1S1 | 0 | 1 | \epsilon$$

CFGs and recursively-defined sets of strings

- A CFG with the start symbol S as its only variable recursively defines the set of strings of terminals that S can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
 - sometimes necessary to use more than one

CFGs and Regular Expressions

Theorem: For any set of strings (language) A described by a regular expression, there is a CFG that recognizes A.

Proof idea:

P(A) is "A is recognized by some CFG" Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
 - $-\epsilon$ is a regular expression
 - -a is a regular expression for any a ∈ Σ
- Recursive step:
 - If A and B are regular expressions then so are:

 $A \cup B$

AB

A*

CFGs are more general than **REs**

• CFG to match RE &

$$S \rightarrow \epsilon$$

• CFG to match RE **a** (for any $a \in \Sigma$)

$$\mathbf{S} \rightarrow \mathbf{a}$$

CFGs are more general than REs

Suppose CFG with start symbol **S**₁ matches RE **A** CFG with start symbol **S**₂ matches RE **B**

CFG to match RE A ∪ B

$$S \rightarrow S_1 \mid S_2$$

+ rules from original CFGs

CFG to match RE AB

$$S \rightarrow S_1 S_2$$

+ rules from original CFGs

CFGs are more general than REs

Suppose CFG with start symbol S₁ matches RE A

• CFG to match RE A^* (= $\epsilon \cup A \cup AA \cup AAA \cup ...$)

$$S \rightarrow S_1 S \mid \varepsilon$$

+ rules from CFG with S₁