
CSE 311: Foundations of Computing

Lecture 21: Context-Free Grammars

[Audience looks around] 
“What is going on? There must be some context we’re missing”



Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set 
of substitution rules involving
– Alphabet S of terminal symbols that can’t be replaced
– A finite set V of variables that can be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
A® w1 |  w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (VÈ S)*



How CFGs generate strings

• Begin with “S”

• If there is some variable A in the current string,
you can replace it by one of the w’s in the rules for A
– A ® w1 |  w2 | ⋯ | wk

–Write this as    xAy⇒ xwy
– Repeat until no variables left

• The set of strings the CFG describes are all strings, 
containing no variables, that can be generated in this 
manner after a finite number of steps



Example Context-Free Grammars

Example: S ® 0S | S1 | e



Example Context-Free Grammars

Example: S ® 0S | S1 | e

0*1*



Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example:      S ® 0S0 | 1S1 | 0 | 1 | e

0*1*



Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example:      S ® 0S0 | 1S1 | 0 | 1 | e

The set of all binary palindromes

0*1*



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1"!: 𝑛 ≥ 0

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1"!: 𝑛 ≥ 0

S ® 0S1 | e

S ® 0S11 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1!#$0: 𝑛 ≥ 0

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0!1!: 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0!1!#$0: 𝑛 ≥ 0

S ® 0S1 | e

S ® A10
A ® 0A1 | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e

The set of all strings of matched parentheses



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S ® SS | 0S1 | 1S0 | e



Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

Let 𝑥 ∈ {0,1}∗. Define 𝑓" 𝑘 to be #0s – #1s in the 
first 𝑘 characters of 𝑥.

E.g., for x = 011100
0     1     2     3     4     5     6

Example Context-Free Grammars

S ® SS | 0S1 | 1S0 | e

𝑓



Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

Let 𝑥 ∈ {0,1}∗. Define 𝑓" 𝑘 to be #0s – #1s in the 
first 𝑘 characters of 𝑥.

If 𝑘-th character is 0, then 𝑓" 𝑘 = 𝑓" 𝑘 − 1 + 1
If 𝑘-th character is 1, then 𝑓" 𝑘 = 𝑓" 𝑘 − 1 − 1

Example Context-Free Grammars

S ® SS | 0S1 | 1S0 | e



Let 𝑥 ∈ (0 ∪ 1)∗. Define 𝑓" 𝑘 to be the number 0s 
minus the number of 1s in the 𝑘 characters of 𝑥.

E.g., for x = 011100

𝑓" 𝑘 = 0 when first k characters have #0s = #1s
– starts out at 0 𝑓" 0 = 0
– ends at 0 𝑓" 𝑛 = 0

0     1     2     3     4     5     6

Example Context-Free Grammars

𝑓



Three possibilities for 𝑓"(k) for 𝑘 ∈ {1,… , 𝑛 − 1}

• 𝑓" 𝑘 > 0 for all such 𝑘

• 𝑓" 𝑘 < 0 for all such 𝑘

• 𝑓" 𝑘 = 0 for some such 𝑘

Example Context-Free Grammars

0     1                         n-1 n

S ® 0S1

S ® 1S0

S ® SS

0     1                         n-1 n

0     1                         n-1 n



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y



Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
| 5 | 6 | 7 | 8 | 9

Generate  (2∗x) + y

E ⇒ E+E⇒	(E)+E⇒ (E∗E)+E⇒ (2∗E)+E⇒ (2∗x)+E⇒ (2∗x)+y



Parse Trees 

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by 

symbols of w left-to-right  for some rule A ®w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110



Two ways to Define Binary Palindromes

Recursively-Defined Set
Basis: 
ε is a palindrome
any 𝑎 ∈ S is a palindrome

Recursive step:
If 𝑝 is a palindrome,
then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ S

Grammar S ® 0S0 | 1S1 | 0 | 1 | e



CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable 
recursively defines the set of strings of terminals 
that S can generate

• A CFG with more than one variable is a 
simultaneous recursive definition of the sets of 
strings generated by each of its variables
– sometimes necessary to use more than one



Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is a 
CFG that recognizes 𝐴.  

Proof idea:
P(A) is “A is recognized by some CFG”
Structural induction based on the recursive 
definition of regular expressions...

CFGs and Regular Expressions



Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

A È B
AB
A*



CFGs are more general than REs

• CFG to match RE e

S ®e

• CFG to match RE a (for any 𝑎 Î S)

S ® a



CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A 
CFG with start symbol S2 matches RE B

• CFG to match RE A È B

S ® S1 | S2 + rules from original CFGs

• CFG to match RE AB

S ® S1 S2 + rules from original CFGs



CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A 

• CFG to match RE A* (= e È A È AA È AAA È ... )

S ® S1 S | e + rules from CFG with S1


