CSE 311: Foundations of Computing

Lecture 20: Structural Induction, Regular Expressions

OH NO! THE KILER || BUT TO FIND THEM WED HAVE TO SEARCH
WHENEVER T LEARN A | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL I CONCOCT | |HER ON VACATION ! sa'mwf FORMATTED LIKE AN ADDRESS!

ELABORATE FANTASY

SR f 2 f‘jﬁ\ s e
e | (R
af (Y
o
mi

Previously on 311: Recursive Definitions

Examples we saw fall in two categories

* hew types of data
* subsets of previously-defined data

NewTypes | Subsets

Natural Numbers Even Numbers
Lists Powers of 3
Trees Fibonacci Numbers

Strings

Last time: Structural Induction

Structural induction is the tool used to prove many
more interesting theorems

* General associativity follows from our one rule
— likewise for generalized De Morgan’s laws

* Okay to substitute y for x everywhere in a modular
equation when we know that x =,,, y

* More coming shortly...

Theoretical Computer Science

Strings

 An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000, 004, ... and *"

 2* is defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifw € 2*,a € 2, then wa € 2*

Languages: Sets of Strings

* Subsets of strings are called languages

 Examples:
— 2" = All strings over alphabet =
— Palindromes over X
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O’'s and 1’s
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs
— Valid English sentences

Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
— i.e., which can define more languages

e Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
i.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful

Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:

e Is a palindrome
any a € 2 is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every a € X

Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include @)
a is a regular expression forany a € ~

* Recursive step:
If A and B are regular expressions, then so are:
AUB
AB
A*

Each Regular Expression is a “pattern”

€ matches only the empty string
a matches only the one-character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e U AU AA U AAA U ...)

Definition of the language
matched by a regular expression

Language of a Regular Expression

The language defined by a regular expression:
L(e) = {¢}
L(a) = {a}
LLAUB) =L(A)VUL(B)
L(AB) ={x : A3y e L(A),3z€ L(B) (x =y *z)}
L(A") = Up=o L(A")
A" defined recursively by
A =0
AL — A g

Examples

001*

O*1*

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

(OoOul)0O0ulo

(0*1*)*

Examples

(OoOul)0O0ulo

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings

Examples

* All binary strings that contain 0110

Oul*0110 (0w 1)*

Examples

* All binary strings that contain 0110

Oul*0110 (0w 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(00 LU 11)* (01010 L 10001) (O L 1)*

Examples

* All binary strings that have an even # of 1’s

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10%10%)*

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10%10%)*

* All binary strings that don’t contain 101

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10%10%)*

* All binary strings that don’t contain 101

e.g., 0%(1 U 1000*)*(0* U 10%)

at least two Os between 1s

Regular Expressions in Practice

* Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral Astartofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|lb) aorb (A U B)
av zero or one of a (AU Eg)
a* zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?[0-9]1*(\.|\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1's

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

