CSE 311: Foundations of Computing

Lecture 20: Structural Induction, Regular Expressions
Previously on 311: Recursive Definitions

Examples we saw fall in two categories

- new types of data
- subsets of previously-defined data

<table>
<thead>
<tr>
<th>New Types</th>
<th>Subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Numbers</td>
<td>Even Numbers</td>
</tr>
<tr>
<td>Lists</td>
<td>Powers of 3</td>
</tr>
<tr>
<td>Trees</td>
<td>Fibonacci Numbers</td>
</tr>
<tr>
<td>Strings</td>
<td></td>
</tr>
</tbody>
</table>
Last time: Structural Induction

Structural induction is the tool used to prove many more interesting theorems

• General associativity follows from our one rule
 – likewise for generalized De Morgan’s laws

• Okay to substitute y for x everywhere in a modular equation when we know that $x \equiv_m y$

• More coming shortly...
Theoretical Computer Science
Strings

• An alphabet Σ is any finite set of characters

• The set Σ^* of strings over the alphabet Σ
 – example: $\{0,1\}^*$ is the set of binary strings

 $0, 1, 00, 01, 10, 11, 000, 001, \ldots$ and “”

• Σ^* is defined recursively by
 – Basis: $\varepsilon \in \Sigma^*$ (\varepsilon is the empty string, i.e., “”)
 – Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$
Languages: Sets of Strings

- Subsets of strings are called **languages**
- Examples:
 - $\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over Σ
 - Binary strings that don’t have a 0 after a 1
 - Binary strings with an equal # of 0’s and 1’s
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences
Look at different ways of defining languages
See which are more expressive than others
 - i.e., which can define more languages
Later: connect ways of defining languages to different types of (restricted) computers
 - computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not
Consequence: computers that recognize more expressive languages are more powerful
Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:

ε is a palindrome
any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every $a \in \Sigma$
Regular Expressions

Regular expressions over Σ

• Basis:
 ε is a regular expression (could also include \emptyset)
 a is a regular expression for any $a \in \Sigma$

• Recursive step:
 If A and B are regular expressions, then so are:
 $A \cup B$
 AB
 A^*
Each Regular Expression is a “pattern”

ε matches only the empty string

a matches only the one-character string a

A ∪ B matches all strings that either A matches or B matches (or both)

AB matches all strings that have a first part that A matches followed by a second part that B matches

A* matches all strings that have any number of strings (even 0) that A matches, one after another (ε ∪ A ∪ AA ∪ AAA ∪ ...)

Definition of the language matched by a regular expression
Language of a Regular Expression

The language defined by a regular expression:

\[L(\varepsilon) = \{ \varepsilon \} \]
\[L(a) = \{ a \} \]

\[L(A \cup B) = L(A) \cup L(B) \]

\[L(AB) = \{ x : \exists y \in L(A), \exists z \in L(B) \ (x = y \cdot z) \} \]

\[L(A^*) = \bigcup_{n=0}^{\infty} L(A^n) \]

\(A^n \) defined recursively by

\[A^0 = \emptyset \]
\[A^{n+1} = A^n A \]
Examples

001*

0*1*
Examples

001*

\{00, 001, 0011, 00111, \ldots\}

0*1*

Any number of 0’s followed by any number of 1’s
Examples

\[(0 \cup 1) \ 0 \ (0 \cup 1) \ 0\]

\[(0*1*)*\]
Examples

\((0 \cup 1) \cdot 0 (0 \cup 1) \cdot 0\)

\{0000, 0010, 1000, 1010\}

\((0*1*)^*\)

All binary strings
Examples

• All binary strings that contain 0110

\[(0 \cup 1)^* 0110 (0 \cup 1)^*\]
Examples

• All binary strings that contain 0110

\[(0 \cup 1)^* \ 0110 \ (0 \cup 1)^*\]

• All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

\[(00 \cup 11)^* \ (01010 \cup 10001) \ (0 \cup 1)^*\]
Examples

• All binary strings that have an even # of 1’s
Examples

• All binary strings that have an even # of 1’s

 e.g., \(0^*(10^*10^*)^* \)
Examples

• All binary strings that have an even # of 1’s

 e.g., 0*(10*10*)*

• All binary strings that don’t contain 101
Examples

• All binary strings that have an even # of 1’s

 e.g., 0*(10*10*)*

• All binary strings that don’t contain 101

 e.g., 0*(1 \cup 1000\{})*\{}(0\{} \cup 10\{})*

 at least two 0s between 1s
Regular Expressions in Practice

- Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
- Used in `grep`, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!
Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();

 \[[01]\] a 0 or a 1 \(^\) start of string \(\)$ end of string
 \[[0-9]\] any single digit \(\) period \(\), comma \(-\) minus
 . any single character
ab a followed by b \((AB)\)
(a|b) a or b \((A \cup B)\)
a? zero or one of a \((A \cup \varepsilon)\)
a* zero or more of a \(A^*\)
a+ one or more of a \(AA^*\)

- e.g. \(^[\[\-\]]\)\? [0-9]* (\. | \,)? [0-9]+\$

 General form of decimal number e.g. 9.12 or -9,8 (Europe)
Limitations of Regular Expressions

• Not all languages can be specified by regular expressions
• Even some easy things like
 – Palindromes
 – Strings with equal number of 0’s and 1’s
• But also more complicated structures in programming languages
 – Matched parentheses
 – Properly formed arithmetic expressions
 – etc.