Midterm

 Midterm in class Monday

* Covers material up to ordinary induction (HW5)

Closed book, closed notes
— will provide reference sheets

No calculators
— arithmetic is intended to be straightforward
— (only a small point deduction anyway)



Midterm

* 5 problems covering:
— Logic / English translation
— Circuits / Boolean algebra / normal forms
— Modular equations
— Induction
— Set theory
— (any English proofs would have templates)

10 minutes per problem
— write quickly
— focus on the overall structure of the solution



CSE 311: Foundations of Computing

Lecture 19: Structural Induction

the
tujj’

(oo




Last time: Recursive Definitions of Sets

Even humbers
Basis: O0€eS
Recursive: If x €S, thenx+2 €S

Powers of 3
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Fibonacci numbers
Basis: (0,00eS,(1,1)€ES
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.



Last time: Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Last time: Structural vs. Ordinary Induction

Ordinary induction is a special case of
structural induction:

Recursive definition of N
Basis: 0N
Recursive step: If k€N, thenk+1 €N



Last time: Recursive Definitions

* Recursively defined functions and sets are our
mathematical models of code and the data it uses
— any recursively defined set can be translated into a Java

— any recursively defined function can be translated into a
Java function

some (but not all) can be written more cleanly as loops

e Can now do proofs about CS-specific objects



Lists of Integers

* Basis: nil € List

* Recursive step:
if L € List and a € Z,
then a :: L € List

Examples:
— nil ]
— 1 ::nil 1]
— 1::2::nil 1, 2]
—1:2::3::nil 1, 2, 3]




Functions on Lists

Length:

len(nil) :=0
len(a:: L) :=1len(L) + 1 for any L € Listand a € Z

Concatenation:

concat(nil, R) :=R for any R € List
concat(a:: L, R):=a:: concat(L,R) foranyl, R € List and
anya€Z



. : Basis» nil € List
Last time: Structural Induction .
Recursive step:

if L € Listand a € Z,

How to prove V x € S, P(x) is true: _
thena:: L € List

Base Case: Sho P(u) is trye for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) hol of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis

Conclude thatV x € S, P(x)



Claim: len(concat(L, R)) =len(L) + len(R) for all L € List




Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.



Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.

Base Case (nil):

Length: Concatenation:

len(nil) :=0 concat(nil, R) :=R
len(a:: L) :=len(L) + 1 concat(a:: L, R) :=a:: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.

Base Case (nil):

len(concat(nil, R)) =len(R) def of concat
=0 + len(R)
= len(nil) + len(R)  def of len



Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)
= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R).



Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)
= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R).
Inductive Step: |Goal: Show that P(a :: L) is true




Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)
= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R).
Inductive Step: |Goal: Show that P(a :: L) is true

Length: Concatenation:

len(nil) :=0 concat(nil, R) :=R
len(a:: L) :=len(L) + 1 concat(a:: L, R) := a:: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)
= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R).
Inductive Step: |Goal: Show that P(a :: L) is true

We can calculate
len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len
which is P(a :: L).



Claim: len(concat(L, R)) =len(L) + len(R) for all L € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R)".
We prove P(L) for all L € List by structural induction.

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)

= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R).

Inductive Step: |Goal: Show that P(a :: L) is true

We can calculate
len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len
which is P(a :: L).

By induction, we have shown the claim holds for all L € List.



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

len(concat(nil, R)) =len(R) def of concat
=0 + len(R)
= len(nil) + len(R)  def of len

Since R was arbitrary, P(nil) holds.



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.



Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step: |Goal: Show that P(a :: L) is true




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step: |Goal: Show that P(a :: L) is true
Let R € List be arbitrary. Then,




Claim: len(concat(L, R)) =len(L) + len(R) for all L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .

We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step:

Let R € List be arbitrary. Then, we can calculate
len(concat(a :: L, R)) =len(a:: concat(L, R))
= 1 + len(concat(L, R))

Goal: Show that P(a :: L) is true

=1+ len(L) + len(R)
= len(a:: L) + len(R)

Since R was arbitrary, we have shown P(a :: L).

def of concat
def of len
IH

def of len

By induction, we have shown the claim holds for all L € List.



Rooted Binary Trees

* Basis: * |s arooted binary tree



Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

°
L



Defining Functions on Rooted Binary Trees

size(®) =1

) =1+ size(T,) + size(T,)

::= 1 + max{height(T,), height(T,)}



Basis: e is arooted binary tree

Last time: Structural Induction  |=>,

]: and ¢

Sl S

1 | |

How to prove V x € S, P(x) is true /N, oot ey v

............

Base Case: /S{ow that P(u) is truef/for all specific
elements u of S mentioned in the (Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Claim: For every rooted binary tree T, size(T) < 2height(T +1 _ 1




Claim: For every rooted binary tree T, size(T) < 2height(T +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

size(*) =1 height(®) =0
size ( T1 T 2 ) =1 + size(T,) + size(T,) height ( T1 Tz ) ::= 1 + max{height(T,), height(T,)}




Claim: For every rooted binary tree T, size(T) < 2height(T +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.



Claim: For every rooted binary tree T, size(T) < 2height(T +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightMJ+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P( T/\ ).

---------------




Claim: For every rooted binary tree T, size(T) < 2height(T +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2

4. Inductive Step: Goal: Prove P( T/\ ).
size( /\ )
o'qT1‘\‘ :'.Tz“‘
size(*) =1
size ( T/\T ) =1 + size(T,) + size(T,)
height(¢) =0
height T/\T ) ::= 1+ maxfheight(T,), height(T,)}| < 2height( ?/\ )+1 _ 1




Claim: For every rooted binary tree T, size(T) < 2height(T +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P( \r/\)

By def, size( T/\T ) =1+size(T,)+size(T,)

----------------

by IHforT,and T,
< 2height(Tq)+1 4 Yheight(T2)+1_1

< 2(2max(height(Tl),height(Tz))+1)_1

<2 ( 2 height( ;/\T

............................

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.



Strings

 An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000, 004, ...  and *"

 2* is defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifw € 2*,a € 2, then wa € 2*



Basis: ¢ € X *

Last time: Structural Induction ——=2., qive steps:

ifweX*anda e 2,

How to prove V x € S, P(x) is/true: | thenwa ¢ *

T

Base Case: S at P(u) is true for all specific
elements uof S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing nam
elements mentioned in the Recursive step

Inductive Step: Prove that S for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis

Conclude thatV x € S, P(x)



Functions on Recursively Defined Sets (on X*)

Length:
len(€) ::=0
len(wa) ::=len(w)+ 1forw e X* ae X

Concatenation:
xeg=xforxe X"
xewa:=(xew)aforxeX*, aeX
Reversal:
gRu=¢g
(WalR:=aewRforweX* aeX

Number of c¢’s in a string:

#(g) =0
* Separate cases for
#C(WC) = #C(W) +1forw€E Z CVS a#C

#(wa) i=#(w)forweX*,aeX a#c



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z*".
We prove P(y) for all y € * by structural induction.

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X%, i.e., len(xew) = len(x) + len(w) for all x



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x €| Does this look
We prove P(y) for all y € X* by structural indu familiar?

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ® €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X% i.e., len(xew) = len(x) + len(w) for all x
Inductive Step: |Goal: Show that P(wa) is true for everya €

Let a € X and x € Z*. Then len(xewa) = len((xe®w)a) by def of o
= len(xew)+1 by def of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by def of len

Therefore, len(xewa)= len(x)+len(wa) for all x € £*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X"



Claim: len(xR) = len(x) for all x € X*

Let P(x) be “len(x?) = len(x)".

We will prove P(x) for all x € Z* by structural induction.

Length:
len(g) ::=0
len(wa) ::=len(w) + LforweX*, aeX

Reversal:
eRu=¢g
(wa)R ::=a e whforweX*

LJaEX




Claim: len(xR) = len(x) for all x € X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € Z* by structural induction.
Base Case (x = €): Then, len(e®) = len(€) by def of string reverse.



Claim: len(xR) = len(x) for all x € X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € Z* by structural induction.

Base Case (x = €): Then, len(e®) = len(€) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X%, i.e., len(wR) = len(w).

Inductive Step: |Goal: Show that len((wa)R) = len(wa) for every a

Length: Reversal:
len(e) :=0 gRu=¢
len(wa) :=len(w) +1forweX* ae X (wa)R::=aewRforweX*, aeX




Claim: len(xR) = len(x) for all x € X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € Z* by structural induction.
Base Case (x = €): Then, len(e®) = len(€) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X%, i.e., len(wR) = len(w).
Inductive Step: |Goal: Show that len((wa)R) = len(wa) for every a

Let a € Z. Then, len((wa)R) = len(aewR) def of reverse
=len(a) + len(wR) by previous result
=len(a) + len(w) IH
= len(1) + len(w) def of len
= len(wa) def of len

Therefore, len((wa)R)= len(wa), so P(wa) is true for every a € X.

So, we have shown len(xR?) = len(x) for all x € X* by induction.



More Theorems

Structural induction is the tool used to prove many
more interesting theorems

* General associativity follows from our one rule
— likewise for generalized De Morgan’s laws

* Okay to substitute y for x everywhere in a modular
equation when we know that x =,,, y

* More coming shortly...



