
Midterm

• Midterm in class Monday

• Covers material up to ordinary induction (HW5)

• Closed book, closed notes
– will provide reference sheets

• No calculators
– arithmetic is intended to be straightforward
– (only a small point deduction anyway)



Midterm

• 5 problems covering:
– Logic / English translation
– Circuits / Boolean algebra / normal forms
– Modular equations
– Induction
– Set theory
– (any English proofs would have templates)

• 10 minutes per problem
– write quickly
– focus on the overall structure of the solution



CSE 311: Foundations of Computing

Lecture 19:        Structural Induction



Last time: Recursive Definitions of Sets

Fibonacci numbers
Basis:  (0, 0) ∈	S, (1, 1) ∈	S
Recursive: If (n-1, x) ∈	S and (n, y) ∈	S,

then (n+1, x + y) ∈	S.

Powers of 3
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Even numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S 



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Last time: Structural vs. Ordinary Induction

Ordinary induction is a special case of 
structural induction:

Recursive definition of ℕ
Basis: 0 ∈	ℕ
Recursive step:  If 𝑘 ∈	ℕ, then 𝑘 + 1 ∈	ℕ



Last time: Recursive Definitions

• Recursively defined functions and sets are our 
mathematical models of code and the data it uses
– any recursively defined set can be translated into a Java
– any recursively defined function can be translated into a 

Java function
some (but not all) can be written more cleanly as loops

• Can now do proofs about CS-specific objects



Lists of Integers

• Basis: nil ∈ List
• Recursive step: 

if L ∈ List and a ∈ ℤ,
then a	::	L ∈ List

Examples:
– nil []
– 1	::	nil [1]
– 1	::	2	::	nil [1, 2]
– 1	::	2	::	3	::	nil [1, 2, 3]



Functions on Lists

Length:

len(nil)	:=	0
len(a	::	L)	:=	len(L)	+	1 for any L ∈	List and a ∈	ℤ

Concatenation:
concat(nil,	R) := R for any R ∈	List
concat(a	::	L,	R)	:=	a	::	concat(L,	R) for any L, R ∈	List and

any a ∈ ℤ



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R)” .   
We prove P(L) for all L ∈	List by structural induction.
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Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R)” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil):
len(concat(nil,	R))	=	len(R) def of concat

=	0	+	len(R)
=	len(nil)	+	len(R) def of len

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R)” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): We have len(concat(nil,	R))	=	len(R)	=	0	+	len(R)	
=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R).
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Base Case (nil): We have len(concat(nil,	R))	=	len(R)	=	0	+	len(R)	
=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R).
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=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary
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Inductive Step: Goal: Show that P(a	::	L) is true
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Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R)” .   
We prove P(L) for all L ∈	List by structural induction.
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=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R).
Inductive Step: Goal: Show that P(a	::	L) is true

We can calculate
len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R)) def of concat

=	1	+	len(concat(L,	R)) def of len
=	1	+	len(L)	+	len(R) IH
=	len(a	::	L)	+	len(R) def of len

which is P(a	::	L).

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R)” .   
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which is P(a	::	L).
By induction, we have shown the claim holds for all L ∈ List.
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Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.
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Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then,
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Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then,

len(concat(nil,	R))	=	len(R) def of concat
=	0	+	len(R)
=	len(nil)	+	len(R) def of len

Since R was arbitrary, P(nil) holds.
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Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step: Goal: Show that P(a	::	L) is true

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step: Goal: Show that P(a	::	L) is true

Let R ∈	List be arbitrary. Then, 
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Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R ∈	List be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L ∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step: Goal: Show that P(a	::	L) is true

Let R ∈	List be arbitrary. Then, we can calculate
len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R)) def of concat

=	1	+	len(concat(L,	R)) def of len
=	1	+	len(L)	+	len(R) IH
=	len(a	::	L)	+	len(R) def of len

Since R was arbitrary, we have shown P(a	::	L).
By induction, we have shown the claim holds for all L ∈ List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R) for all L,	R	∈ List
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Rooted Binary Trees

• Basis:  •    is a rooted binary tree
• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T1 T2

T1 T2



Defining Functions on Rooted Binary Trees

• size(•) ::= 1

• size ( ) ::= 1 + size(T1) + size(T2)

• height(•) ::= 0

• height ( ) ::= 1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 

rooted binary trees T1 and T2.
4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
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by IH for T1 and T2
≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
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Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, … and “”

• S* is defined recursively by
– Basis: εÎ S∗ (ε is the empty string, i.e., “”)
– Recursive: if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Functions on Recursively Defined Sets (on S*)
Length:

len(ε) ::= 0
len(wa) ::= len(w) + 1 for w ∈	S*, a ∈	S

Concatenation:
x • ε ::= x for x ∈ S*

x • wa ::= (x • w)a for x ∈	S*, a ∈	S

Reversal:
ε R ::= ε
(wa)R ::= a • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
#c(ε) ::= 0
#c(wc) ::= #c(w) + 1 for w ∈	S*
#c(wa) ::= #c(w) for w ∈	S*, a ∈	S, a ≠ c

separate cases for
c  vs  a ≠ c



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x ∈	S* be arbitrary. Then, len(x • ε) = len(x) =
len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step: Goal: Show that P(wa) is true for every a ∈	S
Let a ∈	S and x ∈	S*. Then len(x•wa) = len((x•w)a) by def of •

=  len(x•w)+1 by def of len
= len(x)+len(w)+1  by I.H.
= len(x)+len(wa) by def of len

Therefore, len(x•wa)= len(x)+len(wa) for all x ∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈S*

Does this look 
familiar?



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.

Claim:  len(xR) = len(x) for all x ∈S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε!) = len(ε) by def of string reverse.

Claim:  len(xR) = len(x) for all x ∈S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε!) = len(ε) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(wR) = len(w).

Inductive Step: Goal: Show that len((wa)R) = len(wa) for every a

Claim:  len(xR) = len(x) for all x ∈S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε!) = len(ε) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w ∈	S*, i.e., len(wR) = len(w).

Inductive Step: Goal: Show that len((wa)R) = len(wa) for every a

Let a ∈	S. Then, len((wa)R) = len(a•wR) def of reverse
= len(a) + len(wR)  by previous result
= len(a) + len(w) IH
= len(1) + len(w) def of len
= len(wa) def of len

Therefore, len((wa)R)= len(wa), so P(wa) is true for every a ∈	S.

So, we have shown len(xR) = len(x) for all x ∈ S* by induction.

Claim:  len(xR) = len(x) for all x ∈S*



More Theorems

Structural induction is the tool used to prove many 
more interesting theorems

• General associativity follows from our one rule
– likewise for generalized De Morgan’s laws

• Okay to substitute 𝑦 for 𝑥 everywhere in a modular 
equation when we know that 𝑥 ≡" 𝑦

• More coming shortly…


