- Midterm in class Monday
- Covers material up to ordinary induction (HW5)
- Closed book, closed notes
 - will provide reference sheets
- No calculators
 - arithmetic is intended to be straightforward
 - (only a small point deduction anyway)

- 5 problems covering:
 - Logic / English translation
 - Circuits / Boolean algebra / normal forms
 - Modular equations
 - Induction
 - Set theory
 - (any English proofs would have templates)
- 10 minutes per problem
 - write quickly
 - focus on the overall structure of the solution

CSE 311: Foundations of Computing

Lecture 19: Structural Induction

Last time: Recursive Definitions of Sets

Even numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$

Powers of 3 Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$.

Fibonacci numbersBasis: $(0, 0) \in S, (1, 1) \in S$ Recursive:If $(n-1, x) \in S$ and $(n, y) \in S$,
then $(n+1, x + y) \in S$.

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements *w* constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Last time: Structural vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$

- Recursively defined functions and sets are our mathematical models of code and the data it uses
 - any recursively defined set can be translated into a Java
 - any recursively defined function can be translated into a Java function

some (but not all) can be written more cleanly as loops

• Can now do proofs about CS-specific objects

Lists of Integers

- **Basis:** nil ∈ **List**
- Recursive step:

if $L \in List$ and $a \in \mathbb{Z}$, then $a :: L \in List$

Examples:

– nil	[]
– 1 :: nil	[1]
– 1 :: 2 :: nil	[1, 2]
– 1 :: 2 :: 3 :: nil	[1, 2, 3]

Functions on Lists

Length:

len(nil) := 0len(a :: L) := len(L) + 1

for any $\mathsf{L} \in \textbf{List}$ and $\mathsf{a} \in \mathbb{Z}$

Concatenation:

concat(nil, R) := R concat(a :: L, R) := a :: concat(L, R) for any $R \in List$ for any L, $R \in List$ and any $a \in \mathbb{Z}$

Last time: Structural Induction Basis> nil ∈ List

Recursive step:

How to prove $\forall x \in S, P(x)$ is true:

if $L \in List$ and $a \in \mathbb{Z}$,

then $a :: L \in List$

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Base Case (nil):

Length:

len(nil) := 0len(a :: L) := len(L) + 1 **Concatenation:**

concat(nil, R) := R
concat(a :: L, R) := a :: concat(L, R)

Base Case (nil):

$$len(concat(nil, R)) = len(R) def of concat= 0 + len(R) elen(R) def of len$$

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R).

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

 $L \in List, i.e., len(concat(L, R)) = len(L) + len(R).$

Inductive Step: Goal: Show that P(a :: L) is true

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R).

Inductive Step: Goal: Show that P(a :: L) is true

Length:

len(nil) := 0len(a :: L) := len(L) + 1 **Concatenation:**

concat(nil, R) := R concat(a :: L, R) := a :: concat(L, R)

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

 $L \in List, i.e., len(concat(L, R)) = len(L) + len(R).$ Inductive Step: Goal: Show that P(a :: L) is true

We can calculate

$$len(concat(a :: L, R)) = len(a :: concat(L, R)) def of concat= 1 + len(concat(L, R)) def of len= 1 + len(L) + len(R) IH= len(a :: L) + len(R) def of len$$

which is P(a :: L).

Base Case (nil): We have len(concat(nil, R)) = len(R) = 0 + len(R)= len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

 $L \in List, i.e., len(concat(L, R)) = len(L) + len(R).$ Inductive Step: Goal: Show that P(a :: L) is true

We can calculate

$$len(concat(a :: L, R)) = len(a :: concat(L, R)) def of concat= 1 + len(concat(L, R)) def of len= 1 + len(L) + len(R) IH= len(a :: L) + len(R) def of len$$

which is P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.

Base Case (nil): Let $R \in List$ be arbitrary. Then,

Base Case (nil): Let $R \in List$ be arbitrary. Then,

len(concat(nil, R)) = len(R) def of concat= 0 + len(R)= len(nil) + len(R) def of len

Since R was arbitrary, P(nil) holds.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$. **Inductive Step:** Goal: Show that P(a :: L) is true

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.Inductive Step:Goal: Show that P(a :: L) is true

Let $R \in List$ be arbitrary. Then,

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$. **Inductive Step:** Goal: Show that P(a :: L) is true

Let $R \in List$ be arbitrary. Then, we can calculatedef of concatlen(concat(a :: L, R)) = len(a :: concat(L, R))def of concat= 1 + len(concat(L, R))def of len= 1 + len(L) + len(R)IH= len(a :: L) + len(R)def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.

• **Basis:** • is a rooted binary tree

Rooted Binary Trees

- Basis: is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(•) ::= 1

• size
$$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right)$$
 ::= 1 + size (\mathbf{T}_1) + size (\mathbf{T}_2)

• height(•) ::= 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ &$$

Conclude that $\forall x \in S, P(x)$

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and $2^{0+1}-1=2^1-1=1$ so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

Goal: Prove P(

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.

Goal: Prove P(

- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

size(•) ::= 1
size (
$$T_1$$
) ::= 1 + size(T_1) + size(T_2)

$$\begin{array}{l} \text{height}(\cdot) ::= 0 \\ \text{height}\left(\overbrace{T_1}, \overbrace{T_2}\right) ::= 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \\ \leq 2^{\text{height}}\left(\overbrace{T_1}, \overbrace{T_2}\right) + 1 - 1 \end{array}$$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step: By def, size(T_1 , T_2) $=1+size(T_1)+size(T_2)$ $\leq 1+2^{height(T_1)+1}-1+2^{height(T_2)+1}-1$ by IH for T_1 and T_2 $\leq 2^{height(T_1)+1}+2^{height(T_2)+1}-1$ $\leq 2(2^{max(height(T_1),height(T_2))+1})-1$ $\leq 2(2^{height(A)}) - 1 \leq 2^{height(A)}+1 - 1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.

- An alphabet Σ is any finite set of characters
- The set Σ^* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings
 0, 1, 00, 01, 10, 11, 000, 001, ... and ""
- Σ^* is defined recursively by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "")
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Last time: Structural Induction How to prove $\forall x \in S, P(x)$ is true: Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step Inductive Hypothesis: Assume that P is true for some

arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Functions on Recursively Defined Sets (on Σ^*)

```
Length:
len(\varepsilon) ::= 0
len(wa) ::= len(w) + 1 for w \in \Sigma^*, a \in \Sigma
```

Concatenation:

 $x \bullet \varepsilon ::= x \text{ for } x \in \Sigma^*$ $x \bullet wa ::= (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

Reversal:

$$\varepsilon^{R} ::= \varepsilon$$

(wa)^R ::= a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Number of c's in a string: $\#_c(\varepsilon) ::= 0$ $\#_c(wc) ::= \#_c(w) + 1$ for $w \in \Sigma^*$ $\#_c(wa) ::= \#_c(w)$ for $w \in \Sigma^*$, $a \in \Sigma$, $a \neq c$ $\#_c(wa) ::= \#_c(w)$ for $w \in \Sigma^*$, $a \in \Sigma$, $a \neq c$

Claim: len(x•y) = len(x) + len(y) for all $x, y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Claim: len(x•y) = len(x) + len(y) for all $x, y \in \Sigma^*$

Let P(y) be "len(x We prove P(y) fo	$x \bullet y) = \text{len}(x) + \text{len}(y)$ for all $x \in \mathbb{D}^{*}$ all $y \in \Sigma^{*}$ by structural indu	Does this look familiar?		
Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.				
Inductive Hypot	hesis: Assume that P(w) is true $w \in \Sigma^*$, i.e., len(x•w) = Goal: Show that P(wa) is true	ue for some arbitrary en(x) + len(w) for all x e for every $a \in \Sigma$		
Let $a \in \Sigma$ and $x \in \Sigma$	Σ^* . Then len(x•wa) = len((x• = len(x•v = len(x)+ = len(x)+	w)a)by def of •w)+1by def of lenlen(w)+1by l.H.len(wa)by def of len		

Therefore, len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

Let P(x) be "len $(x^R) = len(x)$ ". We will prove P(x) for all $x \in \Sigma^*$ by structural induction.

Length: len(ε) ::= 0 len(wa) ::= len(w) + 1 for w $\in \Sigma^*$, a $\in \Sigma$ **Reversal:**

ε ^R ::= ε

(wa)^R ::= a • $w^{\mathbb{R}}_{*}$ for $w \in \Sigma^{*}$, $a \in \Sigma$

Let P(x) be "len $(x^R) = len(x)$ ". We will prove P(x) for all $x \in \Sigma^*$ by structural induction. Base Case $(x = \varepsilon)$: Then, $len(\varepsilon^R) = len(\varepsilon)$ by def of string reverse. Let P(x) be "len $(x^R) = len(x)$ ".

We will prove P(x) for all $x \in \Sigma^*$ by structural induction.

Base Case (x = ε): Then, len(ε^R) = len(ε) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(w^R) = len(w)$.

Inductive Step: Goal: Show that len((wa)^R) = len(wa) for every a

Length:

len(ϵ) ::= 0 len(wa) ::= len(w) + 1 for w $\in \Sigma^*$, a $\in \Sigma$ Reversal: $\varepsilon^{R} ::= \varepsilon$ (wa)^R ::= a • w^{R} for $w \in \Sigma^{*}$, $a \in \Sigma$ Let P(x) be "len $(x^R) = len(x)$ ".

We will prove P(x) for all $x \in \Sigma^*$ by structural induction.

Base Case $(x = \varepsilon)$: Then, $len(\varepsilon^R) = len(\varepsilon)$ by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(w^R) = len(w)$.

Inductive Step: Goal: Show that len((wa)^R) = len(wa) for every a

Let $a \in \Sigma$. Then, $len((wa)^{F})$	^R) = len(a•w ^R)	def of reverse
	= len(a) + len(w ^R)	by previous result
	= len(a) + len(w)	IH
	= len(1) + len(w)	def of len
	= len(wa)	def of len

Therefore, len((wa)^R)= len(wa), **so** P(wa) **is true for every** $a \in \Sigma$.

So, we have shown $len(x^R) = len(x)$ for all $x \in \Sigma^*$ by induction.

Structural induction is the tool used to prove many more interesting theorems

- General associativity follows from our one rule
 - likewise for generalized De Morgan's laws
- Okay to substitute y for x everywhere in a modular equation when we know that $x \equiv_m y$
- More coming shortly...