CSE 311: Foundations of Computing

Lecture 18: Recursively Defined Functions & Sets

WHAT IS IT?




Last time: Fibonacci Numbers

fo=0
fi=1
fn = frnoq1 + fr—p foralln = 2




Last Time: Upper Bound f,, < 2" foralln > 0

1.

2.
3.

S.

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.
Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from 0 to k.
Inductive Step:| Goal: Show P(k+1); that is, f,,; < 2k
Case k+1 =1: Then f;=1<2=2!s0 P(k+1) is true here.
Case k+1 > 2: Then f,,,=f, + f,_, by definition
< 2k+ 2k1py the IH since k-1 >0
< 2k4 2k = 2.2k = Dk+l
so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

Therefore by strong induction,
. : fo=0 f1=1
f, < 2" for all integers n > 0. fo= i+ fny foralln =2




Inductive Proofs with Multiple Base Cases

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Cases:” Prove|P(b), P(b + 1), ..., P(c)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer|/k > ¢
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”




Inductive Proofs With Multiple Base Cases

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Cases:” Prove|P(b), P(b + 1), ..., P(c)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer|k = ¢
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(+1)/2-1

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1.

2.
3.

Let P(n) be “f, >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%/2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1

No need for cases for the definition here:
feor=f+fi.y since k+1>2
Now just want to apply the IH to get P(k) and P(k-1)

Problem: Though we can get P(k) since k > 2,
k-1 may only be 1 so we can’t conclude P(k-1)

Solution: Separate cases for when k-1=1 (or k+1=3).

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.
2. Base Cases: f,=f;+fy=1 and 2%2-1=20=1 so P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Cases: f,=f;+fy=1 and 2%2-1=20=1 so P(2) holds
fy=f,+f, =2 >212=72321=3(1)/2-1 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1
We have f . ,=f + f by definition since k+1 > 2

> 2K/214 2(k1)/2-1 By the IH since k-1 > 2
> 2(k—1)/2—1 + 2(k—1)/2—1 — 2(k—1)/2 — 2(k+1)/2 -1

so P(k+1) is true.
5. Therefore by strong induction, f, > 2"/2-1 for all integers n > 2.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Why does this help us bound the running time of Euclid’s
Algorithm?

We already proved that f, > 2"/2~1so f,,, = 2(n~1/2
Therefore: if Euclid’s Algorithm takes n steps
for gcd(a, b) witha = b > 0

then q > 2(n—1)/2

so(n—1)/2<log,aorn<1+2log,a
i.e., # of steps < 1 + twice the # of bits in a.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

An informal way to get the idea: Consider an n step gcd
calculation starting with r,,,=a and r =b:
rn+1 = ann + rn—1
= +
= Gnafn1 ¥ Fooa Forallk>2,r _,=r.,, modr,
3 = Of, t0
M dir

Now r; > 1 and each q, must be > 1. If we replace all the
q¢’s by 1 and replace r, by 1, we can only reduce the r,’s.
After that reduction, r =f, for every k.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,,;1.

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a =2 b>0 takes n steps — a >f,,;” forall n > 1.

Base Case: n=1 Suppose Euclid’s Algorithm with a 2 b >0 takes 1 step.
By assumption,a=>b >1=1f, so P(1) holds.

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integers js.t. 1<j<k

Inductive Step: We want to show:|if gcd(a,b) with a =2 b > 0 takes k+1
steps, thena>f,,,




Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true

for all integersjs.t. 1 <j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, then a > f,,,

Now if k+1=2, then Euclid’s algorithm on a and b can be written as
a=qyb +rq

b=q;n
and r; > 0.

Also, sincea>b >0, we musthaveqg,>21andb>1.

Soa=q,b+r;2b+r; 2141 =2=f;="f,, as required.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integersjs.t. 1 <j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, then a > f,,,

Next suppose that k+1 > 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

d = Qk+1 b + Mk

b =qyr+ e

Mk = k1M1t N2

and there are k-2 more steps after this. Note that this means that
the gcd(b, r,) takes k steps and gcd(r, r.1) takes k-1 steps.
So since k, k-1 > 1, by the IH we have b > f,; and r, > f,.

Also, since a > b, we must have q,,; > 1.

Soa=qb+r.2b+r 21+ fi=1,,as required. g



Last time: Recursive definitions of functions

Ol=1 (n+D!'=m+1)-n! foralln = 0.

F(0O)=0;, Fn+1)=Fn)+1foralln = 0.

GO0)=1; G(n+1)=2-G(n)foralln> 0.

HO0)=1; Hn+1) =2® foralln > 0.



Last time: Recursive definitions of functions

* Recursive functions allow general computation
— saw examples not expressible with simple expressions

e So far, we have considered only simple data
— Inputs and outputs were just integers

* We need general data as well...
— these will also be described recursively

— will allow us to describe data of real programs
e.g., strings, lists, trees, expressions, propositions, ...

We’'ll start simple: sets of numbers



Recursive Definitions of Sets (Data)

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S



Recursive Definition of Sets

Recursive definition of set S

 Basis Step: 0 €S
 Recursive Step: If x€ S, thenx+2 €S

e Exclusion Rule: Every element in S follows from
the basis step and a finite number of recursive

steps.

We need the exclusion rule because otherwise
S=N would satisfy the other two parts. However,
we won’t always write it down on these slides.



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.

Fibonacci numbers



Last time: Recursive definitions of functions

* Before, we considered only simple data
— Inputs and outputs were just integers

 Proved facts about those functions with induction
—n!'sn”
—f, <2"andf, 2 2v21

« How do we prove facts about functions that work

with more complex (recursively defined) data?
— we need a more sophisticated form of induction



Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary
induction:
Define Q(n) to be “for all x € S that can be

constructed in at most
n recursive steps, P(x) is true.”

Ordinary induction is a special case of
structural induction:

Recursive definition of N
Basis: 0N
Recursive step: If keENthenk +1€N



Using Structural Induction

* Let S be given by...

—Basis: 6 <S5S; 15€ S
— Recursive: if x,y € S thenx +y € S.

Claim: Every element of S is divisible by 3.



Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

Basis: 6<S5; 15€S§
Recursive: if x,y € S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6<S5; 15€S§
Recursive: if x,y € S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6<S5; 15€S§
Recursive: if x,y € S thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.
5. Therefore by induction 3|x for all x € S.

Basis: 6<S5; 15€S§
Recursive: if x,y € S thenx+y €S




Using Structural Induction

* Let T be given by...

—Basis: 6 T; 15T
— Recursive: if x e T,thenx +6 € Tandx+15€T

e Two base cases and two recursive cases

Claim: Every element of T is also in S.



Claim: Every element of S is divisible by 3.

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

Basis: 6 <S5; 15€ S Basis: 6 <T; 15T
Recursive: if x,y € S, Recursive: if x e T,thenx +6 €T
thenx+yeS andx+15€T




Claim: Every element of S is divisible by 3.

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

Basis: 6 <S5; 15€ S
Recursive: if x,y € S,
thenx+yeS

Basis: 6 <T; 15T
Recursive: if x e T,thenx + 6 €T
and x + 15 €T




Claim: Every element of S is divisible by 3.

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) is true
for some arbitrary xe T

Basis: 6 <S5; 15€ S Basis: 6 <T; 15T
Recursive: if x,y € S, Recursive: if x e T,thenx +6 €T
thenx+yeS andx+15€T




Claim: Every element of S is divisible by 3.

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Basis: 6 <S5; 15€ S
Recursive: if x,y € S,
thenx+yeS

Basis: 6 <T; 15T
Recursive: if x e T,thenx + 6 €T
and x + 15 €T




Claim: Every element of S is divisible by 3.

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) is true
for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)
Since P(x) holds, we have x € S. From the recursive step of S,
we can see that x + 6 €S, so P(x+6) is true, and

we can see that x + 15 € S, so P(x+15) is true.

Basis: 6 <S5; 15€ S Basis: 6 <T; 15T
Recursive: if x,y € S, Recursive: if x e T,thenx +6 €T
thenx+yeS andx+15€T




Claim: Every element of S is divisible by 3.

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have x € S. From the recursive step of S,
we can see that x + 6 €S, so P(x+6) is true, and

we can see that x + 15 € S, so P(x+15) is true.
5. Therefore P(x) for all x € T by induction.

Basis: 6 <S5; 15€ S
Recursive: if x,y € S,
thenx+yeS

Basis: 6 <T; 15T
Recursive: if x e T,thenx + 6 €T
and x + 15 €T




