
CSE 311: Foundations of Computing

Lecture 18:  Recursively Defined Functions & Sets



Last time: Fibonacci Numbers

𝑓! = 0
𝑓" = 1
𝑓# = 𝑓#$" + 𝑓#$% for all 𝑛 ≥ 2



Last Time: Upper Bound  𝑓# < 2# for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.
Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0                        
< 2k + 2k = 2·2k  = 2k+1

so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 
fn < 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Inductive Proofs with Multiple Base Cases

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝑏 by induction.”

2. “Base Cases:” Prove 𝑃(𝑏), 𝑃(𝑏 + 1), …, 𝑃(𝑐)
3. “Inductive Hypothesis:

Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝑐”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Inductive Proofs With Multiple Base Cases

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
integers 𝑛 ≥ 𝑏 by strong induction.”

2. “Base Cases:” Prove 𝑃(𝑏), 𝑃(𝑏 + 1), …, 𝑃(𝑐)
3. “Inductive Hypothesis:

Assume that for some arbitrary integer 𝑘 ≥ 𝑐,
𝑃(𝑗) is true for every integer 𝑗 from 𝑏 to 𝑘”   

4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
Use the goal to figure out what you need. 
Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true)
and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! # $ % for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                  
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! # $ % for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                  
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! # $ % for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2 
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! # $ % for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2 
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! # $ % for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2 
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐

No need for cases for the definition here:
fk+1 = fk + fk-1  since k+1 ≥ 2

Now just want to apply the IH to get P(k) and P(k-1)
Problem:  Though we can get P(k) since k ≥ 2,

k-1 may only be 1 so we can’t conclude P(k-1)
Solution: Separate cases for when k-1=1 (or k+1=3).



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! # $ % for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds
f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

We have fk+1 = fk +  fk-1 by definition since k+1 ≥ 2
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

so P(k+1) is true.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! # $ % for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) holds
f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 =2(k+1)/2 -1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

We have fk+1 = fk +  fk-1 by definition since k+1 ≥ 2
≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

so P(k+1) is true.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 2.

𝒇𝟎 = 𝟎 𝒇𝟏 = 𝟏
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐 for all 𝒏 ≥ 𝟐



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

Why does this help us bound the running time of Euclid’s 
Algorithm?

We already proved that 𝑓! ≥ 2 ⁄! %&# so 𝑓!"# ≥ 2 ⁄(!&#) %

Therefore: if Euclid’s Algorithm takes 𝑛 steps
for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0
then 𝑎 ≥ 2 ⁄(!&#) %

so (𝑛 − 1)/2 ≤ log% 𝑎 or 𝑛 ≤ 1 + 2 log% 𝑎
i.e., # of steps ≤ 1 + twice the # of bits in 𝑎.



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

An informal way to get the idea: Consider an n step gcd
calculation starting with rn+1=a and rn=b:

rn+1 =   qnrn +  rn-1
rn = qn-1rn-1 + rn-2

…
r3 =   q2r2 + r1
r2 =   q1r1

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps

for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 
By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k

Inductive Step: We want to show: if gcd(a,b) with a ≥ b > 0 takes k+1 
steps, then a ≥ fk+2.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Now if k+1=2, then Euclid’s algorithm on a and b can be written as 
a = q2b  + r1 
b = q1r1

and r1 > 0.

Also, since a ≥ b > 0, we must have q2 ≥ 1 and b ≥ 1. 

So a = q2b + r1 ≥ b + r1 ≥ 1+1 = 2 = f3 = fk+2 as required.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

for all integers j s.t. 1 ≤ j ≤ k 
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have

a = qk+1 b + rk
b  = qk rk + rk-1
rk = qk-1 rk-1 + rk-2

and there are k-2 more steps after this.   Note that this means that 
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1, by the IH we have b ≥ fk+1 and rk ≥ fk.

Also, since a ≥ b, we must have qk+1 ≥ 1. 

So a = qk+1b + rk ≥ b + rk ≥ fk+1+ fk= fk+2 as required.



Last time: Recursive definitions of functions 

• 0! = 1; (𝑛 + 1)! = (𝑛 + 1) * 𝑛! for all 𝑛 ≥ 0.

• 𝐹(0) = 0; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 0. 

• 𝐺(0) = 1; 𝐺(𝑛 + 1) = 2 * 𝐺(𝑛) for all 𝑛 ≥ 0. 

• 𝐻(0) = 1; 𝐻(𝑛 + 1) = 2) * for all 𝑛 ≥ 0.



Last time: Recursive definitions of functions 

• Recursive functions allow general computation
– saw examples not expressible with simple expressions

• So far, we have considered only simple data
– inputs and outputs were just integers

• We need general data as well...
– these will also be described recursively
– will allow us to describe data of real programs

e.g., strings, lists, trees, expressions, propositions, …

• We’ll start simple: sets of numbers



Recursive Definitions of Sets (Data)

Natural numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S 

Even numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S 



Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 ∈	S
• Recursive Step: If x ∈	S, then x + 2 ∈	S
• Exclusion Rule: Every element in S follows from 

the basis step and a finite number of recursive 
steps.

We need the exclusion rule because otherwise 
S=ℕwould satisfy the other two parts.  However, 
we won’t always write it down on these slides.



Recursive Definitions of Sets

Basis:  (0, 0) ∈	S, (1, 1) ∈	S
Recursive: If (n-1, x) ∈	S and (n, y) ∈	S,

then (n+1, x + y) ∈	S.

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S 

Even numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S 

?



Recursive Definitions of Sets

Powers of 3:
Basis: 1 ∈	S
Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+1 ∈	S 

Even numbers
Basis:  0 ∈	S
Recursive: If x ∈	S, then x+2 ∈	S 

Fibonacci numbers
Basis:  (0, 0) ∈	S, (1, 1) ∈	S
Recursive: If (n-1, x) ∈	S and (n, y) ∈	S,

then (n+1, x + y) ∈	S.



Last time: Recursive definitions of functions 

• Before, we considered only simple data
– inputs and outputs were just integers

• Proved facts about those functions with induction
– n! ≤ nn

– fn < 2n and fn ≥ 2n/2-1

• How do we prove facts about functions that work 
with more complex (recursively defined) data?
– we need a more sophisticated form of induction



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case: Show that 𝑃(𝑢) is true for all specific 
elements 𝑢 of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃 is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤 constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Structural Induction vs. Ordinary Induction

Structural induction follows from ordinary 
induction:

Define 𝑄(𝑛) to be “for all 𝑥 ∈ 𝑆 that can be 
constructed in at most
𝑛 recursive steps, 𝑃(𝑥) is true.”

Ordinary induction is a special case of 
structural induction:

Recursive definition of ℕ
Basis: 0 ∈	ℕ
Recursive step:  If 𝑘 ∈	ℕ then 𝑘 + 1 ∈	ℕ



Using Structural Induction

• Let 𝑆 be given by…
– Basis: 6Î 𝑆; 15 ∈ 𝑆
– Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Claim:  Every element of 𝑆 is divisible by 3.



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

for some arbitrary x,y ∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x ∈	S.

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆



Using Structural Induction

• Let 𝑇 be given by…
– Basis: 6Î 𝑇; 15Î 𝑇
– Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇 and	𝑥 + 15 ∈ 𝑇

• Two base cases and two recursive cases

Claim:  Every element of 𝑇 is also in 𝑆.



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “x ∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,

then 𝑥 + 𝑦 ∈ 𝑆

Basis: 6Î 𝑇; 15Î 𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇

and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “x ∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6 ∈	S and 15 ∈	S so P(6) and P(15) are true 

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,

then 𝑥 + 𝑦 ∈ 𝑆

Basis: 6Î 𝑇; 15Î 𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇

and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “x ∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6 ∈	S and 15 ∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true 

for some arbitrary x ∈	T

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,

then 𝑥 + 𝑦 ∈ 𝑆

Basis: 6Î 𝑇; 15Î 𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇

and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “x ∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6 ∈	S and 15 ∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true 

for some arbitrary x ∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,

then 𝑥 + 𝑦 ∈ 𝑆

Basis: 6Î 𝑇; 15Î 𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇

and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “x ∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6 ∈	S and 15 ∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true 

for some arbitrary x ∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)

Since P(x) holds, we have x ∈	S. From the recursive step of S,
we can see that x + 6 ∈	S, so P(x+6) is true, and
we can see that x + 15 ∈	S, so P(x+15) is true.

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,

then 𝑥 + 𝑦 ∈ 𝑆

Basis: 6Î 𝑇; 15Î 𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇

and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “x ∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6 ∈	S and 15 ∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true 

for some arbitrary x ∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)

Since P(x) holds, we have x ∈	S. From the recursive step of S,
we can see that x + 6 ∈	S, so P(x+6) is true, and
we can see that x + 15 ∈	S, so P(x+15) is true.

5. Therefore P(x) for all x ∈	T by induction.

Basis: 6Î 𝑆; 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,

then 𝑥 + 𝑦 ∈ 𝑆

Basis: 6Î 𝑇; 15Î 𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇

and 𝑥 + 15 ∈ 𝑇


