CSE 311: Foundations of Computing

Lecture 15: Set Theory \& Induction

Proofs a Subset Relationship

$$
A::=\{x: P(x)\} \quad B::=\{x: Q(x)\}
$$

Let x be arbitrary

1.1. $x \in A$
1.2. $P(x)$

1.8. $Q(x)$
1.9. $x \in B$

1. $x \in A \rightarrow x \in B$
2. $\forall x(x \in A \rightarrow x \in B)$
3. $\mathrm{A} \subseteq \mathrm{B}$

Assumption
Def of A

Def of B
Direct Proof
Intro \forall : 1
Def of Subset: 2

Proofs About Sets

$$
A::=\{x: P(x)\} \quad B::=\{x: Q(x)\}
$$

Prove that $\mathrm{A} \subseteq \mathrm{B}$.
Proof: Let x be an arbitrary object.
Suppose that $\mathrm{x} \in \mathrm{A}$. By definition, this means $\mathrm{P}(\mathrm{x})$.

Thus, we have $Q(x)$. By definition, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that $\mathrm{A} \subseteq \mathrm{B}$.

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^{C}=A^{C} \cap B^{C}$.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

1. Let x be arbitrary
2.1. $x \in(A \cup B)^{C}$

Assumption

2.3. $x \in A^{C} \cap B^{C}$
2. $x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}$
3.1. $x \in A^{C} \cap B^{C}$

Direct Proof
Assumption
3.3. $x \in(A \cup B)^{C}$
3. $x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}$

Direct Proof
4. $\left(x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}\right) \wedge\left(x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}\right)$
5. $x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}$
6. $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

Intro ^: 2, 3
Biconditional: 4
Intro \forall : 1-5

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $x \in A^{C}$ and $x \in B^{C}$, so we we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$, or equivalently $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

Proof technique:

To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by the definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement.

Proofs About Set Equality

A lot of repetitive work to show \rightarrow and \leftarrow.

Do we have a way to prove \leftrightarrow directly?

Recall that $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated biconditional holds since:
$x \in(A \cup B)^{C} \equiv \neg(x \in A \cup B) \quad$ Def of Comp
$\equiv \neg(x \in A \vee x \in B) \quad$ Def of Union
$\begin{aligned} \substack{\text { Chains of equivalences } \\ \text { are often easier to read } \\ \text { like this aratiter than as } \\ \text { English text }} & \equiv x \in A^{C} \wedge x \in B^{C} \\ & \equiv x \in A^{C} \cap B^{C}\end{aligned}$
De Morgan
Def of Comp
Def of Union
Since x was arbitrary, we have shown the sets are equal. \quad -

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic equivalence into " $=$ " relationship between sets by replacing U with \vee, \cap with \wedge, and ${ }^{C}$ with \neg.

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

Proving Sets are Equal

Meta-Theorem: Translate any Propositional Logic equivalence into " $=$ " relationship between sets by replacing U with \vee, \cap with \wedge, and ${ }^{C}$ with \neg.
"Proof": Let x be an arbitrary object.
The stated bi-condition holds since:
$x \in$ left side $\quad \equiv$ replace set ops with propositional logic
三 apply Propositional Logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side
Since x was arbitrary, we have shown the sets are equal. \quad ■

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)::=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days)=?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)::=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
$\mathcal{P}($ Days $)=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)::=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days) $=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing$

Cartesian Product

$A \times B::=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.

Cartesian Product

$$
A \times B::=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
What is $A \times \emptyset ?$

Cartesian Product

$$
A \times B::=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.
$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{F}\}=\varnothing$

Russell's Paradox

$$
S::=\{x: x \notin x\}
$$

Suppose that $S \in S$...

Russell's Paradox

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

More Logic Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
- It only applies over the natural numbers
- The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) \{ ... \}
- Show $P(i)$ holds after i times through the loop

Prove $\forall a, b, m>0 \forall k \in \mathbb{N}\left(\left(a \equiv_{m} b\right) \rightarrow\left(a^{k} \equiv_{m} b^{k}\right)\right)$

Let $a, b, m>0$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary.
Suppose that $a \equiv_{m} b$.
We know $\left(\left(a \equiv_{m} b\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{2} \equiv_{m} b^{2}\right)$ by multiplying congruences. So, applying this repeatedly, we have:

$$
\begin{gathered}
\left(\left(a \equiv_{m} b\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{2} \equiv_{m} b^{2}\right) \\
\left(\left(a^{2} \equiv_{m} b^{2}\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{3} \equiv_{m} b^{3}\right) \\
\ldots \\
\left(\left(a^{k-1} \equiv_{m} b^{k-1}\right) \wedge\left(a \equiv_{m} b\right)\right) \rightarrow\left(a^{k} \equiv_{m} b^{k}\right)
\end{gathered}
$$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow} P(k+1)) \\
\therefore \forall n P(n)
\end{gathered}
$$

How do the givens prove $P(3)$?

Induction Is A Rule of Inference

Domain: Natural Numbers

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\because} P(k+1)) \\
\therefore \forall P(n)
\end{gathered}
$$

How do the givens prove $P(5)$?

First, we have $P(0)$.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.
Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.
Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Using The Induction Rule In A Formal Proof

$$
\begin{gathered}
P(0) \\
\forall k(P(k) \xrightarrow{\rightarrow P(k+1))} \\
\therefore \forall n P(n)
\end{gathered}
$$

Using The Induction Rule In A Formal Proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

1. $\mathrm{P}(0)$
2. $\quad \forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
3. $\forall \mathrm{nP}(\mathrm{n})$

Induction: 1, 4

Using The Induction Rule In A Formal Proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

1. $\mathrm{P}(0)$
2. Let k be an arbitrary integer ≥ 0
3. $P(k) \rightarrow P(k+1)$
4. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)) \quad$ Intro $\forall: 2,3$
5. $\forall \mathrm{nP}(\mathrm{n})$

Induction: 1, 4

Using The Induction Rule In A Formal Proof

$$
\begin{aligned}
& P(0) \\
& \forall k(P(k) \rightarrow P(k+1)) \\
& \therefore \forall n P(n)
\end{aligned}
$$

1. $\mathrm{P}(0)$
2. Let k be an arbitrary integer ≥ 0
3.1. P(k) 3.2. ...
3.3. $\mathrm{P}(\mathrm{k}+1)$
3. $P(k) \rightarrow P(k+1)$
4. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$
5. $\forall \mathrm{nP}(\mathrm{n})$

Assumption

Direct Proof Rule
Intro \forall : 2, 3
Induction: 1, 4

Translating to an English Proof

$$
\begin{gathered}
\begin{array}{c}
P(0) \\
\forall k(P(k) \xrightarrow{3} P(k+1))
\end{array} \\
\therefore \forall n P(n)
\end{gathered}
$$

Translating to an English Proof

Conclusion

Induction English Proof Template

[...Define P(n)...]
We will show that $P(n)$ is true for every $n \in \mathbb{N}$ by Induction.
Base Case: [...proof of $P(0)$ here...]
Induction Hypothesis:
Suppose that $P(k)$ is true for an arbitrary $k \in \mathbb{N}$.
Induction Step:
[...proof of $P(k+1)$ here...]
The proof of $P(k+1)$ must invoke the IH somewhere.
So, the claim is true by induction.

Inductive Proofs In 5 Easy Steps

Proof:

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for every $n \geq 0$ by Induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis:

Suppose $P(k)$ is true for an arbitrary integer $k \geq 0$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true.

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$!!)
5. "Conclusion: Result follows by induction"

What is $1+2+4+\ldots+2^{n}$?

- 1
- $1+2$
- $1+2+4$
- $1+2+4+8$
- $1+2+4+8+16$

$$
=1
$$

$$
=3
$$

$$
=7
$$

$$
=15
$$

$$
=31
$$

It sure looks like this sum is $2^{n+1}-1$
How can we prove it?
We could prove it for $n=1, n=2, n=3, \ldots$ but that would literally take forever.
Good that we have induction!

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

$$
2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1 \text { by IH }
$$

Adding 2^{k+1} to both sides, we get:

$$
2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}=2^{k+1}+2^{k+1}-1
$$

Note that $2^{k+1}+2^{k+1}=2\left(2^{k+1}\right)=2^{k+2}$.
So, we have $2^{0}+2^{1}+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$, which is exactly $\mathrm{P}(\mathrm{k}+1)$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

We can calculate

$$
\begin{aligned}
2^{0}+2^{1}+\ldots+2^{k}+2^{k+1} & =\left(2^{0}+2^{1}+\ldots+2^{k}\right)+2^{k+1} \\
& =\left(2^{k+1}-1\right)+2^{k+1} \quad \text { by the IH } \\
& =2\left(2^{k+1}\right)-1 \\
& =2^{k+2}-1,
\end{aligned}
$$

which is exactly $P(k+1)$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

1. Let $P(n)$ be " $2^{0}+2^{1}+\ldots+2^{n}=2^{n+1}-1^{\prime \prime}$. We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $2^{0}=1=2-1=2^{0+1}-1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^{0}+2^{1}+\ldots+2^{k}=2^{k+1}-1$.
4. Induction Step:

We can calculate

$$
\begin{aligned}
2^{0}+2^{1}+\ldots+2^{\mathrm{k}}+2^{\mathrm{k}+1} & =\left(2^{0}+2^{1}+\ldots+2^{\mathrm{k}}\right)+2^{\mathrm{k}+1} \\
& =\left(2^{\mathrm{k}+1}-1\right)+2^{\mathrm{k}+1} \quad \text { by the IH } \\
& =2\left(2^{k+1}\right)-1 \\
& =2^{k+2}-1,
\end{aligned}
$$

which is exactly $\mathrm{P}(\mathrm{k}+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0): \quad 0=0(0+1) / 2$. Therefore $P(0)$ is true.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case ($n=0$): $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

Goal: Show P(k+1), i.e. show $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$

Prove $1+2+3+\ldots+n=n(n+1) / 2$

1. Let $P(n)$ be " $0+1+2+\ldots+n=n(n+1) / 2$ ". We will show $P(n)$ is true for all natural numbers by induction.
2. Base Case $(n=0)$: $0=0(0+1) / 2$. Therefore $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $1+2+\ldots+k=k(k+1) / 2$
4. Induction Step:

$$
\begin{aligned}
1+2+\ldots+k+(k+1) & =(1+2+\ldots+k)+(k+1) \\
& =k(k+1) / 2+(k+1) \text { by IH } \\
& =(k+1)(k / 2+1) \\
& =(k+1)(k+2) / 2
\end{aligned}
$$

So, we have shown $1+2+\ldots+k+(k+1)=(k+1)(k+2) / 2$, which is exactly $\mathrm{P}(\mathrm{k}+1)$.
5. Thus $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

