
CSE 311: Foundations of Computing

Lecture 15:  Set Theory & Induction



Proofs a Subset Relationship

A  ::=  {x : P(x)} B  ::=  {x : Q(x)}

Let x be arbitrary
1.1.  x ∈ A Assumption
1.2. P(x) Def of A

1.8. Q(x)
1.9. x ∈ B Def of B

1. x ∈ A → x ∈ B Direct Proof
2.  ∀x (x ∈ A → x ∈ B) Intro ": 1
3. A ⊆ B Def of Subset: 2



Prove that A Í B.

Proof: Let x be an arbitrary object.
Suppose that x ∈ A. By definition, this means P(x).
…
Thus, we have Q(x). By definition, this means x ∈ B.
Since x was arbitrary, we have shown, by definition, 
that A Í B.

Proofs About Sets

A  ::=  {x : P(x)} B  ::=  {x : Q(x)}



De Morgan’s Laws



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown,
by definiDon, that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	
1. Let x be arbitrary

2.1.  𝑥 ∈ 𝐴 ∪ 𝐵 ! Assumption
… 
2.3.  𝑥 ∈ 𝐴! ∩ 𝐵!

2. 𝑥 ∈ 𝐴 ∪ 𝐵 !® 𝑥 ∈ 𝐴! ∩ 𝐵! Direct Proof
3.1. 𝑥 ∈ 𝐴! ∩ 𝐵! Assumption
… 
3.3.  𝑥 ∈ 𝐴 ∪ 𝐵 !

3. 𝑥 ∈ 𝐴! ∩ 𝐵!® 𝑥 ∈ 𝐴 ∪ 𝐵 ! Direct Proof
4. 𝑥 ∈ 𝐴 ∪ 𝐵 !® 𝑥 ∈ 𝐴! ∩ 𝐵! Ù (𝑥 ∈ 𝐴! ∩ 𝐵!® 𝑥 ∈ 𝐴 ∪ 𝐵 !) Intro Ù: 2, 3
5. 𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵! Biconditional: 4
6. ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	 Intro ∀: 1-5



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . 

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵).

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…
Thus, 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! , so we we have 𝑥 ∈ 𝐴! ∩ 𝐵!
by the definition of intersection.



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵). 
…
Thus, ¬(𝑥 ∈ 𝐴) and ¬(𝑥 ∈ 𝐵), so 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵!
by the definition of compliment, and we can see that 
𝑥 ∈ 𝐴! ∩ 𝐵! by the definition of intersection.



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definiDon of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The laFer says, 
by the definiDon of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), or 
equivalently ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by De Morgan’s law. 
Thus, we have 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! by the definiDon of 
compliment, and we can see that 𝑥 ∈ 𝐴! ∩ 𝐵! by the 
definiDon of intersecDon.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! .... Then, 𝑥 ∈ 𝐴! ∩ 𝐵! .
Suppose 𝑥 ∈ 𝐴! ∩ 𝐵! . Then, by the definition of 
intersection, we have 𝑥 ∈ 𝐴! and 𝑥 ∈ 𝐵! . That is, we 
have ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by De Morgan’s law. The last is 
equivalent to ¬(𝑥 ∈ 𝐴 ∪ 𝐵), by the definition of union, 
so we have shown 𝑥 ∈ 𝐴 ∪ 𝐵 ! , by the definition of 
complement.



Proofs About Set Equality

A lot of repetitive work to show → and ←.

Do we have a way to prove ↔ directly?

We can use an equivalence chain to prove that a 
biconditional holds.

Recall that A º B and (A « B) º T are the same



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
The stated biconditional holds since:
𝑥 ∈ 𝐴 ∪ 𝐵 ! ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵) Def of Comp

≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) Def of Union
≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) De Morgan
≡ 𝑥 ∈ 𝐴! ∧ 𝑥 ∈ 𝐵! Def of Comp
≡ 𝑥 ∈ 𝐴! ∩ 𝐵! Def of Union

Since x was arbitrary, we have shown the sets are equal.

Chains of equivalences 
are o1en easier to read 
like this rather than as 

English text



Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶

C

A B

C

A B



It’s Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic 
equivalence into “=” relationship between sets by 
replacing ∪ with ∨, ∩ with ∧, and 8! with ¬.



Proving Sets are Equal

Meta-Theorem: Translate any ProposiDonal Logic 
equivalence into “=” relaDonship between sets by 
replacing ∪ with ∨, ∩ with ∧, and 8! with ¬.

“Proof”: Let x be an arbitrary object.
The stated bi-condiDon holds since:
𝑥 ∈ leS side ≡ replace set ops with proposiDonal logic

≡ apply ProposiDonal Logic equivalence
≡ replace proposiDonal logic with set ops
≡ 𝑥 ∈ right side

Since x was arbitrary, we have shown the sets are equal.



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)=?

𝒫(Æ)=?

𝒫 𝐴 ∷= {𝐵 ∶ 𝐵 ⊆ 𝐴 }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

𝒫(Æ)=?

𝒫 𝐴 ∷= {𝐵 ∶ 𝐵 ⊆ 𝐴 }



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

𝒫(Æ)={Æ} ≠Æ

𝒫 𝐴 ∷= {𝐵 ∶ 𝐵 ⊆ 𝐴 }



Cartesian Product

𝐴×𝐵 ∷= {𝑥 ∶ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵 (𝑥 = (𝑎, 𝑏)) }

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

What is 𝑨×∅?

𝐴×𝐵 ∷= {𝑥 ∶ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵 (𝑥 = (𝑎, 𝑏)) }



Cartesian Product

ℝ×ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ × ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A × B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

𝑨×∅ ={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨 ∧ 𝗙} = ∅

𝐴×𝐵 ∷= {𝑥 ∶ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵 (𝑥 = (𝑎, 𝑏)) }



Russell’s Paradox

𝑆 ∷= {𝑥 ∶ 𝑥 ∉ 𝑥 }
Suppose that 𝑆 ∈ 𝑆…



Russell’s Paradox

Suppose that 𝑆 ∈ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∉ 𝑆, but 
that’s a contradiction.

Suppose that 𝑆 ∉ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∈ 𝑆, but 
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This 
statement is false.”

𝑆 ∷= {𝑥 ∶ 𝑥 ∉ 𝑥 }



More Logic
Induction



Mathematical Induction

Method for proving statements about all natural numbers

– A new logical inference rule!
• It only applies over the natural numbers
• The idea is to use the special structure of the naturals 

to prove things more easily

– Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { … }
• Show P(i) holds after i times through the loop



Prove ∀𝑎, 𝑏,𝑚 > 0 ∀ 𝑘 ∈ ℕ ((𝑎 ≡! 𝑏) → (𝑎" ≡! 𝑏"))

Let 𝑎, 𝑏,𝑚 > 0 be arbitrary. Let 𝑘 ∈ ℕ be arbitrary.
Suppose that 𝑎 ≡. 𝑏.

We know (𝑎 ≡! 𝑏) ∧ (𝑎 ≡! 𝑏) → (𝑎)≡! 𝑏)) by multiplying 
congruences.  So, applying this repeatedly, we have:

(𝑎 ≡! 𝑏) ∧ (𝑎 ≡! 𝑏) → (𝑎) ≡! 𝑏))
(𝑎)≡! 𝑏)) ∧ (𝑎 ≡! 𝑏) → (𝑎* ≡! 𝑏* )

…
(𝑎+,- ≡! 𝑏+,- ) ∧ (𝑎 ≡! 𝑏) → (𝑎+ ≡! 𝑏+)

The “…”s is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(3)?

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0)→ P(1).  

Since P(0) is true and P(0)→ P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1)→ P(2).

Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1.  Assume that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   InducIon: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. P(k) Assumption
3.2.  ...
3.3.  P(k+1)

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating to an English Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0

3.1. Suppose that P(k) is true
3.2.  ...
3.3.  Prove P(k+1) is true

3. P(k) ® P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0
∀𝑘 (𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛 𝑃(𝑛)



Translating to an English Proof

[…Define P(n)…]
We will show that 𝑃(𝑛) is true for every 𝑛 ∈ ℕ by Induction.
Base Case: […proof of 𝑃(0) here…]
Induction Hypothesis: 

Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ∈ ℕ.
Induction Step:

[…proof of 𝑃(𝑘 + 1) here…]
The proof of 𝑃(𝑘 + 1)must invoke the IH somewhere.

So, the claim is true by induction.

Induction English Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 

𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:

Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.

Use the goal to figure out what you need. 
Make sure you are using I.H. and point out where you are 
using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: Result follows by induction”



What is 1 + 2 + 4 + … + 2𝑛 ?

• 1 + 2 + 4 + 8 + 16 = 1
• 1 + 2 + 4 + 8 + 16 = 3
• 1 + 2 + 4 + 8 + 16 = 7
• 1 + 2 + 4 + 8 + 16 = 15
• 1 + 2 + 4 + 8 + 16 = 31

It sure looks like this sum is 2789 − 1
How can we prove it?

We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 
that would literally take forever.
Good that we have induction!



Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
Goal:  Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1

1 + 2 + … + 2k = 2k+1 – 1 by IH
Adding 2k+1 to both sides, we get:

1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
1 + 2 + … + 2k = 2k+1 – 1 by IH

Adding 2k+1 to both sides, we get:
1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1

Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

20 + 21 + … + 2k = 2k+1 – 1 by IH
Adding 2k+1 to both sides, we get:

20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

We can calculate
20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1

= (2k+1 – 1) + 2k+1 by the IH
= 2(2k+1) – 1
= 2k+2 – 1,

which is exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1

Alternative way of writing the inductive step



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  

We can calculate
20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1

= (2k+1 – 1) + 2k+1 by the IH
= 2(2k+1) – 1
= 2k+2 – 1,

which is exactly P(k+1).
5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1 + 2 + 4 + … + 2𝑛 = 2'()– 1



Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0.
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2

1 + 2 + … + n  n(n+1)/2 by IH
Adding n+1 to both sides, we get:

1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

Goal:  Show P(k+1), i.e. show 1 + 2 + …+ k+ (k+1) = (k+1)(k+2)/2
1 + 2 + … + n = n(n+1)/2 by IH

Adding n+1 to both sides, we get:
1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)

Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
exactly P(k+1).

5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  

1 + 2 + … + k + (k+1) = (1 + 2 + … + k) + (k+1) 
= k(k+1)/2 + (k+1)  by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2

So, we have shown 1 + 2 + … + k + (k+1) = (k+1)(k+2)/2, 
which is exactly P(k+1).

5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1 + 2 + 3 + … + 𝑛 = 𝑛(𝑛 + 1)/2


