CSE 311: Foundations of Computing

Lecture 15: Set Theory & Induction




Proofs a Subset Relationship

A = {x:P(x)} B ::= {x:Q(x)}

Let x be arbitrary

1.1. xeA Assumption
1.2. P(x) Def of A
1.8. Qx)
1.9. x€B Def of B

1. xeA—->Xx€EB Direct Proof

2. VxX(x€A—->x€eB) Intro V: 1
3. ACB Def of Subset: 2



Proofs About Sets

A = {x:P(x)} B ::= {x:Q(x)}
Prove that A — B.

Proof: Let x be an arbitrary object.
Suppose that x € A. By definition, this means P(x).

Thus, we have Q(x). By definition, this means x € B.

Since x was arbitrary, we have shown, by definition,
that A — B.



De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, Proof technique:
by definition, that (A U B)¢= A n B¢. To show C = D show

x e C—> xeDand
xeD-osxeC



De Morgan’s Laws

Formally, prove Vx (x € (AU B)¢ & x € A n BY)

1. Let x be arbitrary
21. x € (AU B)¢ Assumption

2.3. x € AN B¢
2.x € (AUB)‘—> x € A n B¢ Direct Proof
3.1. x € A°n B¢ Assumption

3.3. x€e (AuB)¢

3.x€A°NB>x e (AuB)¢ Direct Proof
4. (x€e (AUB) > x€eA°NBOYA(x€eA“NB‘>xe(AuB)®) Introan:2,3
5.x€ (AUB)¢ & x € A° n B¢ Biconditional: 4

6.Vx(x € (AUB)¢ & x € A N BY) Intro V: 1-5



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)C.

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, x € A and x € B¢, so we we have x € A® N B¢
by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, =(x € A) and =(x € B), sox € A® and x € B¢
by the definition of compliment, and we can see that

x € A® N B¢ by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B), or
equivalently =(x € A) A =(x € B) by De Morgan’s law.
Thus, we have x € A® and x € B¢ by the definition of
compliment, and we can see that x € A° N B¢ by the

definition of intersection. Proof technique:
To show C =D show
Xxe C—-xeDand
xeD-oxeC



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A* n BC.

Suppose x € A® N B¢. Then, by the definition of
intersection, we have x € A and x € B¢. That is, we
have —(x € A) A =(x € B), which is equivalent to
—(x € AV x € B) by De Morgan’s law. The last is
equivalent to =(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement.



Proofs About Set Equality

A lot of repetitive work to show — and «.

Do we have a way to prove < directly?

Recall that A=B and (A <> B) =T are the same

We can use an equivalence chain to prove that a
biconditional holds.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
The stated biconditional holds since:

x €E(AUB) = —(x € AUB) Def of Comp
=-(x€AVxE€ERB) Def of Union
Chains of equivalences = _I(x € A) A _I(x € B) De I\/Iorgan
St et = v € A A x € BC Def of Comp
like this rather than as
English text =x€A“nB* Def of Union

Since x was arbitrary, we have shown the sets are equal. B



Distributive Laws

ANBUC)=ANB)UANC)
AUBNC)=(AUB)Nn(A UC(C)

Tenley



It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic
equivalence into “=” relationship between sets by
replacing U with V, N with A, and -¢ with —.




Proving Sets are Equal

Meta-Theorem: Translate any Propositional Logic

“u_n

equivalence into “=” relationship between sets by
replacing U with V, N with A, and -¢ with —.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
x € leftside = replace set ops with propositional logic

apply Propositional Logic equivalence
= replace propositional logic with set ops
= x € right side

Since x was arbitrary, we have shown the sets are equal. B



Power Set

 Power Set of a set A = set of all subsets of A

P(A) =={B:BC A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(LD)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A) =={B:BC A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(LD)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A) =={B:BC A}

e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(Q)={} # &



Cartesian Product

AXB i:={x:3a € A,3b € B(x = (a,b)) }

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Cartesian Product

AXB i:={x:3a € A,3b € B(x = (a,b)) }

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.

7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.

What is AX®?



Cartesian Product

AXB i:={x:3a € A,3b € B(x = (a,b)) }

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.

7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.

AXP={(a,b):a€ANDbeP}={(ab):acA NF} =0



Russell’s Paradox

Su={x:x¢&x}

Suppose that S € S...



Russell’s Paradox

Su={x:x¢&x}

Suppose that S € S. Then, by the definition of S5, S € S, but
that’s a contradiction.

Suppose that S € S. Then, by the definition of S, S € S, but
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This
statement is false.”



More Logic
Induction



Mathematical Induction

Method for proving statements about all natural numbers

— A new logical inference rule!
* It only applies over the natural numbers

 The idea is to use the special structure of the naturals
to prove things more easily

— Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { .. }
* Show P(i) holds after i times through the loop



Prove va,bm >0V k €N ((a=,, b) - (ak =n bk))

Let a, b, m > 0 be arbitrary. Let k € N be arbitrary.
Suppose that a =,,, b.

We know ((a =,,, b) A (a =, b)) — (a?=,, b?) by multiplying
congruences. So, applying this repeatedly, we have:

((@a=m b)A(a =, b)) - (a bz)
((@*=m b*) A(a =y b)) - m b*)

(@1 = 1) A (@ = b)) = (@ S bY)

The “...”"sis a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there such a property of the natural numbers!

Domain: Natural Numbers

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(3)?



Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)

4. Vk(P(k) — P(k+1))
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)
2. Let k be an arbitrary integer >0

3. P(k) > P(k+1)
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)
2. Let k be an arbitrary integer >0
3.1. P(k) Assumption
3.2. ..
3.3. P(k+1)
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Translating to an English Proof

P(0)
vk (P(k) — P(k+ 1))
. Vn P(n)

1. Prove P(0) Base Case

2. Let k be an arbitrary integer >0
3.1. Suppose that P(k) is true

Inductive
Hypothesis

3.2. ... Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Yk (P(k) > P(k+1)) Intro V: 2, 3

5. Vn P(n) Induction: 1, 4



Translating to an English Proof

1. Prove P(0) | Base Case

2. Let k be an arbitrary integer 20
3.1. Assume that P(k) is true
3.2. ..

Inductive
Hypothesis

Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) > P(k+1)) Intro V: 2, 3
5. ¥nP(n) Induction: 1, 4

Induction English Proof Template
[...Define P(n)...]
We will show that P(n) is true for every n € N by Induction.

Base Case: [...proof of P(0) here...]
Induction Hypothesis:

Suppose that P (k) is true for an arbitrary k € N.
Induction Step:

[...proof of P(k + 1) here...]

The proof of P(k + 1) must invoke the IH somewhere.
So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Suppose P (k) is true for an arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !))
5. “Conclusion: Result follows by induction”



Whatis1 + 2 + 4 + ... + 2™?

.« 1 = 1
¢ 1+ 2 = 3
1 +2+4 = 7
c14+24+4+48 = 15

*1+2+ 4+ 38+ 16 31

It sure looks like this sum is 2**1 — 1
How can we prove it?

We could proveitforn =1,n=2,n =3, ... but
that would literally take forever.

Good that we have induction!



Provel + 2 + 4 + ... + 2n =2n+l_1




Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+21+ ... +2"=2"1-1" We will show P(n) is
true for all natural numbers by induction.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+21+ ... +2"=2"1-1" We will show P(n) is
true for all natural numbers by induction.
2. Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that|20 + 21 + ... + 2k = 2k+1 — 1,




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “2°+ 21+ ...+ 2"n=2"1—-1", We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:

Goal: Show P(k+1), i.e. show 20 + 21 + . + 2k + 2k+l = Jk+2 1




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “2°+ 21+ ...+ 2"n=2"1—-1", We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
204214+ | +2k=2k1_-1 pylIH
Adding 21 to both sides, we get:
20+ 21+ + 2k 4 2k+l = Dkt 4 D+l _q
Note that 2k+1 + 2k+1 = 2(2k+1) = Qk+2,
So, we have 20+ 21 + .. + 2k + 2k+1 = 2k+2 _ 1 "which is
exactly P(k+1).



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

Alternative way of writing the inductive step



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Provel + 2 +3 + ..+ n=nn+1)/2




Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+l1)/2". We will show P(n) is
true for all natural numbers by induction.



Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.



Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+l1)/2". We will show P(n) is
true for all natural numbers by induction.
2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > O.‘I.e., suppose 1 +2 + ..+ k =k(k+1)/2




Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+...+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k =k(k+1)/2

Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ...+ k+ (k+1) = (k+1)(k+2)/2




Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+...+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k =k(k+1)/2

Induction Step:
1+2+ ... +k+(k+t1)=(1+2+..+k)+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown 1 +2 + ... + k + (k+1) = (k+1)(k+2)/2,
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



