CSE 311: Foundations of Computing

Lecture 15: Set Theory & Induction

Proofs a Subset Relationship

$$A ::= \{x : P(x)\}$$

B ::=
$$\{x : Q(x)\}$$

Let x be arbitrary

1.1.
$$x \in A$$

1.2.
$$P(x)$$

Assumption

Def of A

1.8.
$$Q(x)$$

1.9.
$$x \in B$$

1.
$$x \in A \rightarrow x \in B$$

2.
$$\forall x (x \in A \rightarrow x \in B)$$

3.
$$A \subseteq B$$

Def of B

Direct Proof

Intro \forall : 1

Def of Subset: 2

Proofs About Sets

$$A ::= \{x : P(x)\}$$

B ::=
$$\{x : Q(x)\}$$

Prove that $A \subseteq B$.

Proof: Let x be an arbitrary object.

Suppose that $x \in A$. By definition, this means P(x).

• • •

Thus, we have Q(x). By definition, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that $A \subseteq B$.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^C = A^C \cap B^C$.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

1. Let x be arbitrary

2.1.
$$x \in (A \cup B)^C$$

...

2.3.
$$x \in A^{C} \cap B^{C}$$

2.
$$x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C$$

3.1.
$$x \in A^{C} \cap B^{C}$$

...

3.3.
$$x \in (A \cup B)^C$$

3.
$$x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C$$

4.
$$(x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C) \land (x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C)$$

5.
$$x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C$$

6.
$$\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$$

Assumption

Direct Proof

Assumption

Direct Proof

Intro ∧: 2, 3

Biconditional: 4

Intro ∀: 1-5

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$.

...

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

• • •

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

• • •

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

• • •

Thus, $x \in A^C$ and $x \in B^C$, so we we have $x \in A^C \cap B^C$ by the definition of intersection.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

...

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^C$ and $x \in B^C$ by the definition of compliment, and we can see that $x \in A^C \cap B^C$ by the definition of intersection.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^{\mathcal{C}}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$, or equivalently $\neg(x \in A) \land \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in A^{\mathcal{C}}$ and $x \in B^{\mathcal{C}}$ by the definition of compliment, and we can see that $x \in A^{\mathcal{C}} \cap B^{\mathcal{C}}$ by the definition of intersection.

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$.

Suppose $x \in A^C \cap B^C$. Then, by the definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement.

Proofs About Set Equality

A lot of *repetitive* work to show \rightarrow and \leftarrow .

Do we have a way to prove ←→ directly?

Recall that $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

Prove that
$$(A \cup B)^C = A^C \cap B^C$$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

The stated biconditional holds since:

$$x \in (A \cup B)^C$$
 $\equiv \neg(x \in A \cup B)$ Def of Comp
 $\equiv \neg(x \in A \lor x \in B)$ Def of Union
Chains of equivalences
are often easier to read
like this rather than as
English text $\equiv x \in A^C \cap B^C$ Def of Union

Since x was arbitrary, we have shown the sets are equal. ■

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

It's Propositional Logic Again!

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing \cup with \vee , \cap with \wedge , and \cdot ^C with \neg .

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proving Sets are Equal

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing \cup with \vee , \cap with \wedge , and \cdot ^C with \neg .

"Proof": Let x be an arbitrary object.

The stated bi-condition holds since:

 $x \in \text{left side} \equiv \text{replace set ops with propositional logic}$

≡ apply Propositional Logic equivalence

≡ replace propositional logic with set ops

 $\equiv x \in \text{right side}$

Since x was arbitrary, we have shown the sets are equal. ■

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) ::= \{B : B \subseteq A \}$$

• e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\mathsf{Days})=?$$

$$\mathcal{P}(\emptyset)$$
=?

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) ::= \{B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$$

$$\mathcal{P}(\varnothing)$$
=?

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) ::= \{B : B \subseteq A \}$$

• e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$$

Cartesian Product

$$A \times B ::= \{x : \exists a \in A, \exists b \in B \ (x = (a, b)) \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A
$$\times$$
 B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

Cartesian Product

$$A \times B ::= \{x : \exists a \in A, \exists b \in B \ (x = (a, b)) \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

What is $A \times \emptyset$?

Cartesian Product

$$A \times B ::= \{x : \exists a \in A, \exists b \in B \ (x = (a, b)) \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

$$A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$$

Russell's Paradox

$$S ::= \{x : x \notin x \}$$

Suppose that $S \in S$...

Russell's Paradox

$$S ::= \{x : x \notin x \}$$

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

More Logic Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

```
for (int i=0; i < n; n++) { ... }
```

Show P(i) holds after i times through the loop

Let a, b, m > 0 be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv_m b$.

We know $((a \equiv_m b) \land (a \equiv_m b)) \rightarrow (a^2 \equiv_m b^2)$ by multiplying congruences. So, applying this repeatedly, we have:

$$((a \equiv_m b) \land (a \equiv_m b)) \rightarrow (a^2 \equiv_m b^2)$$
$$((a^2 \equiv_m b^2) \land (a \equiv_m b)) \rightarrow (a^3 \equiv_m b^3)$$
$$...$$
$$((a^{k-1} \equiv_m b^{k-1}) \land (a \equiv_m b)) \rightarrow (a^k \equiv_m b^k)$$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$\frac{P(0)}{\forall k \ (P(k) \to P(k+1))}$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(3)?

Induction Is A Rule of Inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?

First, we have P(0).

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.

Since P(0) is true and $P(0) \rightarrow P(1)$, by Modus Ponens, P(1) is true.

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.

Since P(1) is true and $P(1) \rightarrow P(2)$, by Modus Ponens, P(2) is true.

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. $\forall n P(n)$

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

- 1. P(0)
- 2. Let k be an arbitrary integer ≥ 0

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Intro \forall : 2, 3

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

- 1. P(0)
- 2. Let k be an arbitrary integer ≥ 0

3.1. P(k)

3.2. ...

3.3. P(k+1)

3. $P(k) \rightarrow P(k+1)$

4. $\forall k (P(k) \rightarrow P(k+1))$

5. \forall n P(n)

Assumption

Direct Proof Rule

Intro \forall : 2, 3

Induction: 1, 4

Translating to an English Proof

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

1. Prove P(0)

Base Case

- 2. Let k be an arbitrary integer ≥ 0 3.1. Suppose that P(k) is true

3.2. ...

3.3. Prove P(k+1) is true

Inductive Hypothesis

Inductive Step

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- \forall n P(n)

Direct Proof Rule

Intro \forall : 2, 3

Induction: 1, 4

Conclusion

Translating to an English Proof

Conclusion

Induction English Proof Template

```
[...Define P(n)...]
We will show that P(n) is true for every n \in \mathbb{N} by Induction. Base Case: [...proof of P(0) here...]
Induction Hypothesis:
Suppose that P(k) is true for an arbitrary k \in \mathbb{N}.
Induction Step:
[...proof of P(k+1) here...]
The proof of P(k+1) must invoke the IH somewhere.
So, the claim is true by induction.
```

Inductive Proofs In 5 Easy Steps

Proof:

- **1.** "Let P(n) be... . We will show that P(n) is true for every $n \ge 0$ by Induction."
- **2.** "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer $k \geq 0$ "
- 4. "Inductive Step:" Prove that P(k + 1) is true. Use the goal to figure out what you need.
 - Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!!)
- 5. "Conclusion: Result follows by induction"

What is $1 + 2 + 4 + ... + 2^n$?

• 1
$$= 1$$
• 1 + 2 $= 3$
• 1 + 2 + 4 $= 7$
• 1 + 2 + 4 + 8 $= 15$

It sure looks like this sum is $2^{n+1} - 1$ How can we prove it?

 \bullet 1 + 2 + 4 + 8 + 16

We could prove it for n=1, n=2, n=3, ... but that would literally take forever.

= 31

Good that we have induction!

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} - 1$ ". We will show P(n) is true for all natural numbers by induction.

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $2^0 + 2^1 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

$$2^0 + 2^1 + ... + 2^k = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$2^{0} + 2^{1} + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $2^0 + 2^1 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

We can calculate

$$2^{0} + 2^{1} + ... + 2^{k} + 2^{k+1} = (2^{0}+2^{1}+... + 2^{k}) + 2^{k+1}$$

$$= (2^{k+1}-1) + 2^{k+1}$$
 by the IH
$$= 2(2^{k+1}) - 1$$

$$= 2^{k+2} - 1.$$

which is exactly P(k+1).

Alternative way of writing the inductive step

- 1. Let P(n) be " $2^0 + 2^1 + ... + 2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$, i.e., that $2^0 + 2^1 + ... + 2^k = 2^{k+1} 1$.
- 4. Induction Step:

We can calculate

$$2^{0} + 2^{1} + ... + 2^{k} + 2^{k+1} = (2^{0} + 2^{1} + ... + 2^{k}) + 2^{k+1}$$

$$= (2^{k+1} - 1) + 2^{k+1}$$
 by the IH
$$= 2(2^{k+1}) - 1$$

$$= 2^{k+2} - 1.$$

which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Prove
$$1 + 2 + 3 + ... + n = n(n+1)/2$$

1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$. I.e., suppose 1 + 2 + ... + k = k(k+1)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$. I.e., suppose 1 + 2 + ... + k = k(k+1)/2
- 4. Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$. I.e., suppose 1 + 2 + ... + k = k(k+1)/2
- 4. Induction Step:

$$1 + 2 + ... + k + (k+1) = (1 + 2 + ... + k) + (k+1)$$

= $k(k+1)/2 + (k+1)$ by IH
= $(k+1)(k/2 + 1)$
= $(k+1)(k+2)/2$

So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.