CSE 311: Foundations of Computing

Lecture 14: Set Theory

Sets

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. 1, $-17,32 / 48, \pi, \sqrt{2}$
[\mathbf{n}] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathrm{n}\}$ when \mathbf{n} is a natural number
$\varnothing=\{ \}$ is the empty set; the only set with no elements

Sets can be elements of other sets

$$
\begin{aligned}
& \text { For example } \\
& \begin{array}{l}
A=\{\{1\},\{2\},\{1,2\}, \varnothing\} \\
B=\{1,2\}
\end{array} \\
& \text { Then } B \in A \text {. }
\end{aligned}
$$

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}::=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}::=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Notes:

$$
(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)
$$

$A \supseteq B$ means $B \subseteq A \quad A \subset B$ means $A \subseteq B$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}::=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}::=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

$$
\begin{array}{ll}
& \text { QUESTIONS } \\
\varnothing \subseteq A ? & \\
A \subseteq B ? & \\
C \subseteq B ? &
\end{array}
$$

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}::=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Note the domain restriction.
We will use a shorthand restriction to a set

$$
\forall x \in A(P(x)) \quad \text { means } \quad \forall x(x \in A \rightarrow P(x))
$$

Restricting all quantified variables improves clarity

Sets \& Logic

Building Sets from Predicates

Every set S defines a predicate " $x \in S$ ".

We can also define a set from a predicate P :

$$
S::=\{x: P(x)\}
$$

$S=$ the set of all x for which $P(x)$ is true

$$
S::=\{x \in U: P(x)\}=\{x:(x \in U) \wedge P(x)\}
$$

Inference Rules on Sets

$$
S::=\{x: P(x)\}
$$

When a set is defined this way, we can reason about it using its definition:

1. $x \in S$ Given
2. $P(x)$ Def of S

This will be our only inference rule for sets!
8. $P(y)$
9. $y \in S \quad$ Def of S

Proofs About Sets

$$
A::=\{x: P(x)\} \quad B::=\{x: Q(x)\}
$$

Suppose we want to prove $A \subseteq B$.

This is a predicate:

$$
\mathrm{A} \subseteq \mathrm{~B}::=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

We need to show that is definition holds

Proofs About Sets

$$
A::=\{x: P(x)\} \quad B::=\{x: Q(x)\}
$$

Let x be arbitrary 1.1. $\mathrm{x} \in \mathrm{A}$
1.9. $x \in B$

1. $x \in A \rightarrow x \in B$
2. $\forall x(x \in A \rightarrow x \in B)$
3. $\mathrm{A} \subseteq \mathrm{B}$

Assumption

??
Direct Proof
Intro \forall : 1
Def of Subset: 2

Proofs About Sets

$$
A::=\{x: P(x)\}
$$

$B::=\{x: Q(x)\}$

Let x be arbitrary

1.1. $x \in A$
1.2. $P(x)$

1.8. $Q(x)$
1.9. $x \in B$

1. $x \in A \rightarrow x \in B$
2. $\forall x(x \in A \rightarrow x \in B)$
3. $\mathrm{A} \subseteq \mathrm{B}$

Assumption

Def of A

Def of B
Direct Proof
Intro \forall : 1
Def of Subset: 2

Proofs About Sets

$$
A::=\{x: P(x)\} \quad B::=\{x: Q(x)\}
$$

Prove that $\mathrm{A} \subseteq \mathrm{B}$.
Proof: Let x be an arbitrary object.
Suppose that $\mathrm{x} \in \mathrm{A}$. By definition, this means $\mathrm{P}(\mathrm{x})$.

Thus, we have $Q(x)$. By definition, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that $\mathrm{A} \subseteq \mathrm{B}$.

Operations on Sets

Set Operations

$A \cup B::=\{x:(x \in A) \vee(x \in B)\}$ Union

$A \cap B::=\{x:(x \in A) \wedge(x \in B)\}$ Intersection
$A \backslash B::=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS

Using A, B, C and set operations, make...
[6] =
$\{3\}=$
$\{1,2\}=$

More Set Operations

$A \bigoplus B::=\{x:(x \in A) \oplus(x \in B)\}$

Symmetric

 Difference$$
\bar{A}=A^{C}::=\{x: x \in U \wedge x \notin A\}
$$ (with respect to universe U)

Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\begin{aligned}
& A \bigoplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

Set Complement

Erik Brynjolfsson *
@erikbryn
It's remarkable that as recently as 11 years ago, the sum of all human knowledge could be provided in just two books.

MARK H. McCORMACK
What They DON'T
Teach You at
Harvard
Business School
Notes from a
Street-Smart Executive
WITh A NEW FOREWORO BY ARIEL EMANUEL ANO PATRICK WHITESELL

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^{C}=A^{C} \cap B^{C}$.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

1. Let x be arbitrary
2.1. $x \in(A \cup B)^{C}$

Assumption

2.3. $x \in A^{C} \cap B^{C}$
2. $x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}$
3.1. $x \in A^{C} \cap B^{C}$

Direct Proof
Assumption
3.3. $x \in(A \cup B)^{C}$
3. $x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}$

Direct Proof
4. $\left(x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}\right) \wedge\left(x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}\right)$
5. $x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}$
6. $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

Biconditional: 4
Intro \forall : 1-5

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $x \in A^{C}$ and $x \in B^{C}$, so we we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$, or equivalently $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

Proof technique:

To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by the definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement.

