CSE 311: Foundations of Computing

Lecture 14: Set Theory Bank Robbers Everyone I'm not asking on the twice You know floor what to do Mom Listen to Put your Give **Taking Off** DJs me, hands in the everything buster Your you got air Sweater I know As God is Are you you're better with me? than this my witness Preachers

Sets

Sets are collections of objects called **elements**.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

Some simple examples $A = \{1\}$ $B = \{1, 3, 2\}$ $C = \{\Box, 1\}$ $D = \{\{17\}, 17\}$ $E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}$

Some Common Sets

```
N is the set of Natural Numbers; \mathbb{N} = \{0, 1, 2, ...\}

\mathbb{Z} is the set of Integers; \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}

\mathbb{Q} is the set of Rational Numbers; e.g. ½, -17, 32/48

\mathbb{R} is the set of Real Numbers; e.g. 1, -17, 32/48, \pi, \sqrt{2}

[n] is the set \{1, 2, ..., n\} when n is a natural number \emptyset = \{\} is the empty set; the only set with no elements
```

Sets can be elements of other sets

For example

$$A = \{\{1\},\{2\},\{1,2\},\varnothing\}$$

$$B = \{1,2\}$$

Then $B \in A$.

Definitions

A and B are equal if they have the same elements

$$A = B ::= \forall x (x \in A \leftrightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B ::= \forall x (x \in A \rightarrow x \in B)$$

• Notes: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$

 $A \supseteq B$ means $B \subseteq A$ $A \subseteq B$ means $A \subseteq B$

Definition: Equality

A and B are equal if they have the same elements

$$A = B ::= \forall x (x \in A \leftrightarrow x \in B)$$

Which sets are equal to each other?

Definition: Subset

A is a subset of B if every element of A is also in B

$$A \subseteq B ::= \forall x (x \in A \rightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{3, 4\}$$

QUESTIONS $\varnothing \subseteq A?$ $A \subseteq B?$ $C \subseteq B?$

Definition: Subset

A is a subset of B if every element of A is also in B

$$A \subseteq B ::= \forall x (x \in A \rightarrow x \in B)$$

Note the domain restriction.

We will use a shorthand restriction to a set

$$\forall x \in A \ (P(x))$$
 means $\forall x \ (x \in A \rightarrow P(x))$

Restricting all quantified variables improves clarity

Sets & Logic

Building Sets from Predicates

Every set S defines a predicate " $x \in S$ ".

We can also define a set from a predicate P:

$$S ::= \{x : P(x)\}$$

S =the set of all x for which P(x) is true

S ::=
$$\{x \in U : P(x)\} = \{x : (x \in U) \land P(x)\}$$

Inference Rules on Sets

$$S ::= \{x : P(x)\}$$

When a set is defined this way, we can reason about it using its definition:

- 1. $x \in S$ Given
- 2. P(x) Def of S

...

8. P(y)

9. $y \in S$ Def of S

This will be our **only** inference rule for sets!

$$A ::= \{x : P(x)\}$$

B ::=
$$\{x : Q(x)\}$$

Suppose we want to prove $A \subseteq B$.

This is a predicate:

$$A \subseteq B ::= \forall x (x \in A \rightarrow x \in B)$$

We need to show that is definition holds

$$A ::= \{x : P(x)\}$$

B ::=
$$\{x : Q(x)\}$$

Let x be arbitrary **1.1.** $x \in A$

Assumption

1.9. $x \in B$

1. $x \in A \rightarrow x \in B$

2. $\forall x (x \in A \rightarrow x \in B)$

3. $A \subseteq B$

??

Direct Proof

Intro \forall : 1

Def of Subset: 2

$$A ::= \{x : P(x)\}$$

B ::=
$$\{x : Q(x)\}$$

Let x be arbitrary

1.1.
$$x \in A$$

1.2.
$$P(x)$$

Assumption

Def of A

1.8.
$$Q(x)$$

1.9.
$$x \in B$$

1.
$$x \in A \rightarrow x \in B$$

2.
$$\forall x (x \in A \rightarrow x \in B)$$

3.
$$A \subseteq B$$

Def of B

Direct Proof

Intro \forall : 1

Def of Subset: 2

$$A ::= \{x : P(x)\}$$

B ::=
$$\{x : Q(x)\}$$

Prove that $A \subseteq B$.

Proof: Let x be an arbitrary object.

Suppose that $x \in A$. By definition, this means P(x).

• • •

Thus, we have Q(x). By definition, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that $A \subseteq B$.

Operations on Sets

Set Operations

$$A \cup B ::= \{ x : (x \in A) \lor (x \in B) \}$$
 Union

$$A \cap B ::= \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B ::= \{ x : (x \in A) \land (x \notin B) \}$$
 Set Difference

$$A = \{1, 2, 3\}$$

 $B = \{3, 5, 6\}$
 $C = \{3, 4\}$

QUESTIONS

Using A, B, C and set operations, make...

$$\{1,2\} =$$

More Set Operations

$$A \oplus B ::= \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = A^C ::= \{ x : x \in U \land x \notin A \}$$
 (with respect to universe U)

Complement

$$A \oplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4,5,6\}$

Set Complement

It's remarkable that as recently as 11 years ago, the sum of all human knowledge could be provided in just two books.

1:55 PM · Sep 10, 2021

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^C = A^C \cap B^C$.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

1. Let x be arbitrary

2.1.
$$x \in (A \cup B)^C$$

...

2.3.
$$x \in A^{C} \cap B^{C}$$

2.
$$x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C$$

3.1.
$$x \in A^{C} \cap B^{C}$$

...

3.3.
$$x \in (A \cup B)^C$$

3.
$$x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C$$

4.
$$(x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C) \land (x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C)$$

5.
$$x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C$$

6.
$$\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$$

Assumption

Direct Proof

Assumption

Direct Proof

Intro ∧: **2**, **3**

Biconditional: 4

Intro ∀: 1-5

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$.

...

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

• • •

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

• • •

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

• • •

Thus, $x \in A^C$ and $x \in B^C$, so we we have $x \in A^C \cap B^C$ by the definition of intersection.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

...

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^C$ and $x \in B^C$ by the definition of compliment, and we can see that $x \in A^C \cap B^C$ by the definition of intersection.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^{\mathcal{C}}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$, or equivalently $\neg(x \in A) \land \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in A^{\mathcal{C}}$ and $x \in B^{\mathcal{C}}$ by the definition of compliment, and we can see that $x \in A^{\mathcal{C}} \cap B^{\mathcal{C}}$ by the definition of intersection.

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$.

Suppose $x \in A^C \cap B^C$. Then, by the definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement.