CSE 311: Foundations of Computing

Lecture 14: Set Theory ‘
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Sets

Sets are collections of objects called elements.

Write a2 € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B=1{1,3, 2}

c ={[1, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, I, a}




Some Common Sets

N is the set of Natural Numbers; N =10, 1, 2, ...}

Z is the set of Integers; Z={...,,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, 1,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
D = {}is the empty set; the only set with no elements




Sets can be elements of other sets

For example
A ={{1},{2},{1,2},S}
B=1{1,2}

Then B € A.




Definitions

A and B are equal if they have the same elements

A=B = Vx(xe A x eB)
 Ais asubset of B if every element of Ais also in B

AcB = Vx(xeA—>xeB)

* Notes: (A=B) =A< B) A(Bc A

A2BmeansBE A ACBmeansAS B



Definition: Equality

A and B are equal if they have the same elements

A=B = Vx(xe A x eB)

A={1, 2, 3}
B=1{3, 4,5}
C=1{3, 4}
D=1{4,3, 3} Which sets are equal to each other?
E={3, 4,3}
F={4, {3}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB ::= Vx(xe A—>x e B)

A=1{1, 2, 3}
B=1{3,4,5}
C=1{3, 4}
QUESTIONS
D A?
AcB?

CcB?




Definition: Subset

A is a subset of B if every element of A is also in B

AcB ::= Vx(xe A—>x e B)
Note the domain restriction.
We will use a shorthand restriction to a set

VxeA (P(x)) means Vx(x € A— P(x))

Restricting all quantified variables improves clarity



Sets & Logic



Building Sets from Predicates

Every set S defines a predicate “x € S”.

We can also define a set from a predicate P:

S = {x:P(x)}

S = the set of all x for which P(x) is true

S = {x€eU:P(x)} = {x:(x€U)AP(x)}



Inference Rules on Sets

S = {x:P(x)}

When a set is defined this way,
we can reason about it using its definition:

1. X €S Given
2. P(x) Def of S

This will be our only
inference rule for sets!

8. P(y)
0. yeS DefofS



Proofs About Sets

A = {x:P(x)} B ::= {x:Q(x)}

Suppose we want to prove A c B.

This is a predicate:

AcB ::= Vx(x e A— x € B)

We need to show that is definition holds



Proofs About Sets

A = {x:P(x)} B ::= {x:Q(x)}

Let x be arbitrary

1.1. xeA Assumption
1.9. xX€B 7
1. xEA->XEB Direct Proof

2. VxX(x€A—->x€eB) Intro V: 1
3. ACB Def of Subset: 2



Proofs About Sets

A = {x:P(x)} B ::= {x:Q(x)}

Let x be arbitrary

1.1. xeA Assumption
1.2. P(x) Def of A
1.8. Qx)
1.9. x€B Def of B

1. xeA—->Xx€EB Direct Proof

2. VxX(x€A—->x€eB) Intro V: 1
3. ACB Def of Subset: 2



Proofs About Sets

A = {x:P(x)} B ::= {x:Q(x)}
Prove that A — B.

Proof: Let x be an arbitrary object.
Suppose that x € A. By definition, this means P(x).

Thus, we have Q(x). By definition, this means x € B.

Since x was arbitrary, we have shown, by definition,
that A — B.



Operations on Sets



Set Operations

AUB::={x:(x€A)V(x €B)} Union

ANB:={x:(x €A)A(x €B)} Intersection

A\B ::={x:(x€A)A(x & B)} | Set Difference

A=1{1, 2, 3} QUESTIONS
B=1{3,5, 6} Using A, B, C and set operations, make...
C={3, 4} [6] =

{3} =

{1,2} =




More Set Operations

ADB:={x:(x€A)D(x€EB) Symmetric

A=A u={x:x€UNAx&A)

(with respect to universe U)

A={1, 2, 3}

B={1, 2, 4, 6}
Universe:

U={1, 2, 3, 4,5, 6}

A @ B={3, 4,6}
A={4,56)}

Difference

Complement
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De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, Proof technique:
by definition, that (A U B)¢= A n B¢. To show C = D show

x e C—> xeDand
xeD-osxeC



De Morgan’s Laws

Formally, prove Vx (x € (AU B)¢ & x € A n BY)

1. Let x be arbitrary
21. x € (AU B)¢ Assumption

2.3. x € AN B¢
2.x € (AUB)‘—> x € A n B¢ Direct Proof
3.1. x € A°n B¢ Assumption

3.3. x€e (AuB)¢

3.x€A°NB>x e (AuB)¢ Direct Proof
4. (x€e (AUB) > x€eA°NBOYA(x€eA“NB‘>xe(AuB)®) Introan:2,3
5.x€ (AUB)¢ & x € A° n B¢ Biconditional: 4

6.Vx(x € (AUB)¢ & x € A N BY) Intro V: 1-5



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)C.

Thus, we have x € A¢ n BC.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, x € A and x € B¢, so we we have x € A® N B¢
by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, =(x € A) and =(x € B), sox € A® and x € B¢
by the definition of compliment, and we can see that

x € A® N B¢ by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B), or
equivalently =(x € A) A =(x € B) by De Morgan’s law.
Thus, we have x € A® and x € B¢ by the definition of
compliment, and we can see that x € A° N B¢ by the

definition of intersection. Proof technique:
To show C =D show
Xxe C—-xeDand
xeD-oxeC



De Morgan’s Laws

Prove that (AU B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A* n BC.

Suppose x € A® N B¢. Then, by the definition of
intersection, we have x € A and x € B¢. That is, we
have —=(x € A) A =(x € B), which is equivalent to
—(x € AV x € B) by De Morgan’s law. The last is
equivalent to =(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement.



