
CSE 311: Foundations of Computing

Lecture 14:  Modular Inverse, Exponentiation



Last time: Useful GCD Facts

If a and b are positive integers, then 
gcd(a, b) = gcd(b, a mod b)

If a is a positive integer,  gcd(a, 0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)   gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
if (b == 0) {

return a;
} else {

return gcd(b, a % b);
}

}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.



gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

Euclid’s Algorithm

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

660 = 5 * 126 + 30
126 = 4 *   30 +   6
30 = 5 *     6 +   0

Tableau form:

Equations with recursive calls:



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.

∀a ∀b ((a > 0 ∧ b > 0) → ∃s ∃t (gcd(a,b) = sa + tb))



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8	
a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)						=	gcd(8,	3)									27	=	3	*	8			+	3
=	gcd(3,	8	mod	3)								=	gcd(3,	2)										8		=	2	*	3			+	2
=	gcd(2,	3	mod	2)									=	gcd(2,	1)										3		=	1	*	2			+	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  -- q * b
8	=	35	– 1	*	27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  -- q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

=	(–1)	*	8	+	3	*	(27	– 3	*	8)
=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
=			3	*	27		+	(–10)	*	8

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	– 1	*	(8	– 2	*	3)
=			3	– 8	+	2	*	3
=	(–1)	*	8	+	3	*	3

=	(–1)	*	8	+	3	*	(27	– 3	*	8)
=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
=			3	*	27		+	(–10)	*	8

=			3	*	27		+	(–10)	*	(35	– 1	*	27)
=			3	*	27			+	(–10)	*	35	+	10	*	27
=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative 
inverse of 𝑎 (modulo 𝑚)  iff 𝑎𝑏 ≡! 1.   

Multiplicative inverse mod𝑚

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Multiplicative inverse mod𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
1 = 𝑠𝑎 + 𝑡𝑚 ≡! 𝑠𝑎

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm

These inverses let us solve modular equations…



Example

Solve:  7𝑥 ≡"# 1



Example

Solve:  7𝑥 ≡"# 1

gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1



Example

Solve:  7𝑥 ≡"# 1

gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2



Example

Solve:  7𝑥 ≡"# 1

gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2



Example

Solve:  7𝑥 ≡"# 1

gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2

1 = 5 – 2 ∗ (7 – 1 ∗ 5)
= (– 2) ∗ 7 + 3 ∗ 5
= –2 ∗ 7 + 3 ∗ (26 –3 ∗ 7)
= −11 ∗ 7 + 3 ∗ 26



Example

Solve:  7𝑥 ≡"# 1

gcd(26, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = 1

26 = 3 ∗ 7 + 5 5 = 26 – 3 ∗ 7
7 = 1 ∗ 5 + 2 2 = 7 – 1 ∗ 5
5 = 2 ∗ 2 + 1 1 = 5 – 2 ∗ 2

1 = 5 – 2 ∗ (7 – 1 ∗ 5)
= (– 2) ∗ 7 + 3 ∗ 5
= –2 ∗ 7 + 3 ∗ (26 –3 ∗ 7)
= −11 ∗ 7 + 3 ∗ 26

Now (−11) mod 26 = 15.   So, 𝑥 = 15 + 26𝑘 for 𝑘 ∈ ℤ.

Multiplicative inverse of 7 modulo 26



Example of a more general equation

Now solve:  7𝑦 ≡"# 3

We already computed that 15 is the multiplicative 
inverse of 7 modulo 26. That is,  7 2 15 ≡"# 1

If 𝑦 is a solution, then multiplying by 15 we have
15 2 7 2 𝑦 ≡"# 15 2 3

Substituting 15 2 7 ≡"# 1 into this on the left gives
y = 1 2 𝑦 ≡"# 15 2 3 ≡"# 19

This shows that every solution y is congruent to 19.



Example of a more general equation

Now solve:  7𝑦 ≡"# 3

Multiplying both sides of 𝑦 ≡"# 19 by 7 gives
7y ≡"# 7 2 19 ≡"# 3

So, any 𝑦 ≡"# 19 is a solution. 

Thus, the set of numbers of the form 𝑦 = 19 + 26𝑘, 
for any 𝑘, are exactly solutions of this equation.



Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

gcd(𝑎,𝑚) = 1 if 𝑚 is prime and 0 < 𝑎 < 𝑚 so 
can always solve these equations mod a prime.

mod 7



Adding to both sides is an equivalence:

𝑥 ≡! 𝑦

𝑥 + 𝑐 ≡! 𝑦 + 𝑐

The same is not true of multiplication…
unless we have a multiplicative inverse 𝑐𝑑 ≡! 1

𝑥 ≡! 𝑦

𝑐𝑥 ≡! 𝑐𝑦

Multiplicative Inverses and Algebra

+𝑐−𝑐

×𝑐×𝑑



Modular Exponentiation mod 7

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1



Exponentiation

• Compute 7836581453

• Compute 7836581453 mod 104729

• Output is small
– need to keep intermediate results small



Small Multiplications

Since 𝑏 = 𝑞𝑚 + (𝑏 mod𝑚), we have 𝑏 mod𝑚 ≡! 𝑏.

And since 𝑐 = 𝑡𝑚 + (𝑐 mod𝑚), we have 𝑐 mod𝑚 ≡! 𝑐.

Multiplying these gives (𝑏 mod𝑚)(𝑐 mod𝑚) ≡! 𝑏𝑐.

By the Lemma from a few lectures ago, this tells us 
𝑏𝑐 mod𝑚 = 𝑏 mod𝑚 𝑐 mod𝑚 mod𝑚.

Okay to mod 𝑏 and 𝑐 by 𝑚 before multiplying if we are 
planning to mod the result by 𝑚



Repeated Squaring – small and fast

Since 𝑏 mod𝑚 ≡! 𝑏 and 𝑐 mod𝑚 ≡! 𝑐
we have 𝑏𝑐 mod𝑚 = 𝑏 mod𝑚 𝑐 mod𝑚 mod𝑚

So            𝑎2mod𝑚 = 𝑎 mod𝑚 " mod𝑚
and          𝑎4mod𝑚 = 𝑎2mod𝑚 " mod𝑚
and          𝑎8mod𝑚 = 𝑎4mod𝑚 " mod𝑚
and          𝑎16mod𝑚 = 𝑎8mod𝑚 " mod𝑚
and          𝑎32mod𝑚 = 𝑎16mod𝑚 " mod𝑚

Can compute 𝑎𝑘 mod𝑚 for 𝑘 = 2𝑖 in only 𝑖 steps
What if 𝑘 is not a power of 2?



Fast Exponentiation Algorithm 
81453 in binary is 10011111000101101
81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 
𝑎$ mod𝑚 using ≤ 2log 𝑘 multiplications mod𝑚

a81453 = a216 · a213 · a212 · a211 · a210 · a29 · a25 · a23 · a22 · a20

a81453mod m= 
(…(((((a216 mod m ·

a213 mod m ) mod m · 
a212 mod m) mod m · 

a211 mod m) mod m · 
a210 mod m) mod m · 

a29 mod m) mod m · 
a25 mod m) mod m · 

a23 mod m) mod m · 
a22 mod m) mod m · 

a20 mod m)  mod m 

Uses only 16 + 9 = 25 
multiplications



Fast Exponentiation:  𝑎𝑘mod𝑚 for all 𝑘

𝑎!"mod𝑚 = 𝑎" mod𝑚 !mod𝑚

𝑎!"#$mod𝑚 = (𝑎 mod𝑚) 3 𝑎2𝑗mod𝑚 mod𝑚

Another way....



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

}
}

𝑎!"mod𝑚 = 𝑎" mod𝑚 !mod𝑚
𝑎!"#$mod𝑚 = (𝑎 mod𝑚) 3 𝑎2𝑗mod𝑚 mod𝑚



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL 
(Secure Socket Layer) based on RSA encryption

• RSA
– Vendor chooses random 512-bit or 1024-bit primes 𝒑, 𝒒

and 512/1024-bit exponent 𝒆.  Computes 𝒎 = 𝒑 ⋅ 𝒒
– Vendor broadcasts (𝒎, 𝒆)
– To send 𝒂 to vendor, you compute 𝑪 = 𝒂𝒆mod𝒎 using 

fast modular exponentiation and send 𝑪 to the vendor.
– Using secret 𝒑, 𝒒 the vendor computes 𝒅 that is the 

multiplicative inverse of 𝒆 mod (𝒑 − 𝟏)(𝒒 − 𝟏).
– Vendor computes 𝑪𝒅mod𝒎 using fast modular 

exponentiation.
– Fact:   𝒂 = 𝑪𝒅mod𝒎 for 𝟎 < 𝒂 < 𝒎 unless 𝒑|𝒂 or 𝒒|𝒂


