CSE 311: Foundations of Computing

Lecture 14: Modular Inverse, Exponentiation

"I asked you a question, buddy. ... What's
the square root of 5,248 ?"

Last time: Useful GCD Facts

If a and b are positive integers, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)
$$

If a is a positive integer, $\operatorname{gcd}(a, 0)=a$.

Euclid's Algorithm

```
gcd(a, b) = gcd(b, a mod b) gcd(a, 0) = a
```

int gcd(int a, int b)\{ /* Assumes: a >= b, b >= 0 */
if (b == 0) \{
return a;
\} else \{
return $\operatorname{gcd}(b, a \% b)$;
\}
\}
Note: $\operatorname{gcd}(\mathrm{b}, \mathrm{a})=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=\operatorname{gcd}(126,660 \bmod 126)=\operatorname{gcd}(126,30)$

$$
\begin{array}{ll}
=\operatorname{gcd}(30,126 \bmod 30) & =\operatorname{gcd}(30,6) \\
=\operatorname{gcd}(6,30 \bmod 6) & =\operatorname{gcd}(6,0) \\
=6 &
\end{array}
$$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.

Equations with recursive calls:

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \bmod 126) \\
& =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \bmod 30) \\
& =6 \\
& =6
\end{aligned}
$$

Tableau form:

$$
\begin{aligned}
660 & =5 * 126+30 \\
126 & =4 * 30+6 \\
30 & =5 * 6+0
\end{aligned}
$$

Bézout's theorem

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b .
$$

$\forall a \forall b((a>0 \wedge b>0) \rightarrow \exists s \exists t(g c d(a, b)=s a+t b))$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):
$\left.\begin{array}{ccc}a \quad b \\ \operatorname{gcd}(35,27)\end{array}\right)=\operatorname{gcd}(27,35 \bmod 27)=r \quad b \quad r \quad \operatorname{gcd}(27,8) \quad \begin{aligned} & a=q * b+r \\ & 35=1 * 27+8\end{aligned}$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

\[

\]

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{|ll}
\hline a=q * b+r & r=a-q * b \\
35=1 * 27+8 \\
27=3 * 8+3 \\
8=2 * 3+2 \\
3=1 * 2+1 & 8=35-1 * 27 \\
\hline
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\left.\begin{array}{ll}
a=q * b+r & r=a-q * b \\
35=1 * 27+8 & 8=35-1 * 27 \\
27=3 * 8+3 & 3=27-3 * 8 \\
8=2 * 3+2 & 2=8-2 * 3 \\
3=1 * 2+1 & 1
\end{array}\right)=3-1 * 2
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 3=27-3 * 8 \\
& 2=8-2 * 3
\end{aligned}
$$

$$
(1)=3-1 * 2
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 1=3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \quad \text { Re-arrange into } \\
& =(-1) * 8+3 * 3 \quad 3 \text { 's and } 8 \text { 's } \\
& \text { Plug in the def of } 3 \\
& =(-1) * 8+3 *(27-3 * 8) \\
& =(-1) * 8+3 * 27+(-9) * 8 \\
& =3 * 27+(-10) * 8
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 1=3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \quad \text { Re-arrange into } \\
& =(-1) * 8+3 * 3 \quad 3 \text { 's and } 8 \text { 's } \\
& \text { Plug in the def of } 3 \\
& =(-1) * 8+3 *(27-3 * 8) \\
& =(-1) * 8+3 * 27+(-9) * 8 \\
& =3 * 27+(-10) * 8 \text { Re-arrange into } \\
& \text { 8's and 27's } \\
& =3 * 27+(-10) *(35-1 * 27) \\
& \text { Re-arrange into } \\
& =3 * 27+(-10) * 35+10 * 27 \\
& 27 \text { 's and } 35 \text { 's }=13 * 27+(-10) * 35
\end{aligned}
$$

Multiplicative inverse mod m

Let $0 \leq a, b<m$. Then, b is the multiplicative

 inverse of a (modulo m) iff $a b \equiv_{m} 1$.| x | 0 | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{1}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| $\mathbf{2}$ | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| $\mathbf{3}$ | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| $\mathbf{5}$ | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| $\mathbf{6}$ | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

$\bmod 7$

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

$\bmod 10$

Multiplicative inverse $\bmod m$

Suppose $\operatorname{gcd}(a, m)=1$
By Bézout's Theorem, there exist integers s and t such that $s a+t m=1$.
s is the multiplicative inverse of a (modulo m):

$$
1=s a+t m \equiv_{m} s a
$$

So... we can compute multiplicative inverses with the extended Euclidean algorithm

These inverses let us solve modular equations...

Example

Solve: $7 x \equiv_{26} 1$

Example

Solve: $7 x \equiv_{26} 1$

$$
\operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1
$$

Example

Solve: $7 x \equiv_{26} 1$

$$
\begin{aligned}
\operatorname{gcd}(26,7) & =\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
26 & =3 * 7+5 \\
7 & =1 * 5+2 \\
5 & =2 * 2+1
\end{aligned}
$$

Example

Solve: $7 x \equiv_{26} 1$

$$
\begin{gathered}
\operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
\begin{array}{cl}
26 & =3 * 7+5 \\
7 & =1 * 5+2 \\
5 & =2 * 2+1
\end{array} \quad 2=7-3 * 7 \\
5=5-2 * 2
\end{gathered}
$$

Example

Solve: $7 x \equiv_{26} 1$

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=3 * 7+5 \quad 5=26-3 * 7 \\
& 7=1 * 5+2 \quad 2=7-1 * 5 \\
& 5=2 * 2+1 \quad 1=5-2 * 2
\end{aligned} \quad \begin{aligned}
& 1-5 \quad-2 *(7-1 * 5) \\
& 1=(-2) * 7 \quad+3 * 5 \\
& \\
& =(-2) * 7 \quad+3 *(26-3 * 7) \\
& \\
& =(-11) * 7+3 * 26
\end{aligned}
$$

Example

Solve: $7 x \equiv_{26} 1$

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=3 * 7+5 \quad 5=26-3 * 7 \\
& 7=1 * 5+2 \quad 2=7-1 * 5 \\
& 5=2 * 2+1 \quad 1=5-2 * 2
\end{aligned} \quad \begin{aligned}
& 1-2 *(7-1 * 5) \\
& 1=(-2) * 7 \quad+3 * 5 \\
& =(-2) * 7 \quad+3 *(26-3 * 7) \\
& \\
& =(-11) * 7+3 * 26 \quad \text { Multiplicative inverse of } 7 \text { modulo } 26
\end{aligned}
$$

Now $(-11) \bmod 26=15$. So, $x=15+26 k$ for $k \in \mathbb{Z}$.

Example of a more general equation

Now solve: $7 y \equiv_{26} 3$

We already computed that 15 is the multiplicative inverse of 7 modulo 26 . That is, $7 \cdot 15 \equiv_{26} 1$

If y is a solution, then multiplying by 15 we have

$$
15 \cdot 7 \cdot y \equiv_{26} 15 \cdot 3
$$

Substituting $15 \cdot 7 \equiv_{26} 1$ into this on the left gives

$$
\mathrm{y}=1 \cdot y \equiv_{26} 15 \cdot 3 \equiv_{26} 19
$$

This shows that every solution y is congruent to 19.

Example of a more general equation

Now solve: $7 y \equiv_{26} 3$

Multiplying both sides of $y \equiv_{26} 19$ by 7 gives

$$
7 y \equiv_{26} 7 \cdot 19 \equiv_{26} 3
$$

So, any $y \equiv_{26} 19$ is a solution.

Thus, the set of numbers of the form $y=19+26 k$, for any k, are exactly solutions of this equation.

Math mod a prime is especially nice

$$
\operatorname{gcd}(a, m)=1 \text { if } m \text { is prime and } 0<a<m \text { so }
$$ can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

Multiplicative Inverses and Algebra

Adding to both sides is an equivalence:

The same is not true of multiplication... unless we have a multiplicative inverse $c d \equiv_{m} 1$

Modular Exponentiation mod 7

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

- Compute 78365^{81453}
- Compute $78365^{81453} \bmod 104729$
- Output is small
- need to keep intermediate results small

Small Multiplications

Since $b=q m+(b \bmod m)$, we have $b \bmod m \equiv_{m} b$.
And since $c=t m+(c \bmod m)$, we have $c \bmod m \equiv_{m} c$.

Multiplying these gives $(b \bmod m)(c \bmod m) \equiv_{m} b c$.

By the Lemma from a few lectures ago, this tells us $b c \bmod m=(b \bmod m)(c \bmod m) \bmod m$.

Okay to $\bmod b$ and c by m before multiplying if we are planning to mod the result by m

Repeated Squaring - small and fast

Since $b \bmod m \equiv_{m} b$ and $c \bmod m \equiv_{m} c$ we have $b c \bmod m=(b \bmod m)(c \bmod m) \bmod m$

$$
\begin{array}{ll}
\text { So } & a^{2} \bmod m=(a \bmod m)^{2} \bmod m \\
\text { and } & a^{4} \bmod m=\left(a^{2} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{8} \bmod m=\left(a^{4} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{16} \bmod m=\left(a^{8} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{32} \bmod m=\left(a^{16} \bmod m\right)^{2} \bmod m
\end{array}
$$

Can compute $a^{k} \bmod m$ for $k=2^{i}$ in only i steps
What if k is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
$81453=2^{16}+2^{13}+2^{12}+2^{11}+2^{10}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}$
$a^{81453}=a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}$
$\mathrm{a}^{81453} \bmod \mathrm{~m}=$
(...(()($\left(\mathrm{a}^{2^{16}} \mathrm{mod} m\right.$.
$\left.a^{2^{13}} \bmod m\right) \bmod m$.
$\left.\mathrm{a}^{2^{12}} \bmod \mathrm{~m}\right) \bmod \mathrm{m}$.
$\left.a^{2^{11}} \bmod m\right) \bmod m$.
Uses only $16+9=25$
multiplications $\left.a^{2^{10}} \bmod m\right) \bmod m$.
$\left.a^{2}{ }^{9} \bmod m\right) \bmod m$.
$\left.a^{2}{ }^{5} \bmod m\right) \bmod m$.
$\left.a^{2^{3}} \bmod m\right) \bmod m$.
$\left.a^{2^{2}} \bmod m\right) \bmod m \cdot$
$\left.a^{2^{0}} \bmod m\right) \bmod m$
The fast exponentiation algorithm computes
$a^{k} \bmod m$ using $\leq 2 \log k$ multiplications $\bmod m$

Fast Exponentiation: $a^{k} \bmod m$ for all k

Another way....

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a,k/2,modulus);
        return (temp * temp) % modulus;
    } else {
        long temp = FastModExp(a,k-1,modulus);
        return (a * temp) % modulus;
    }
}
```

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA
- Vendor chooses random 512-bit or 1024-bit primes p, q and 512/1024-bit exponent e. Computes $m=p \cdot q$
- Vendor broadcasts (m, e)
- To send a to vendor, you compute $C=a^{e}$ mod m using fast modular exponentiation and send C to the vendor.
- Using secret p, q the vendor computes d that is the multiplicative inverse of $e \bmod (p-1)(q-1)$.
- Vendor computes $C^{d} \bmod m$ using fast modular exponentiation.
- Fact: $\quad a=C^{d} \bmod m$ for $0<a<m$ unless $p \mid a$ or $q \mid a$

