CSE 311: Foundations of Computing

Lecture 14: Modular Inverse, Exponentiation

Last time: Useful GCD Facts

If a and b are positive integers, then $gcd(a, b) = gcd(b, a \mod b)$

If a is a positive integer, gcd(a, 0) = a.

```
gcd(a, b) = gcd(b, a mod b) gcd(a, 0) = a
```

```
int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
   if (b == 0) {
      return a;
   } else {
      return gcd(b, a % b);
   }
}
```

Note: gcd(b, a) = gcd(a, b)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) =
```

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6
```

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

Equations with recursive calls:

Tableau form:

$$660 = 5 * 126 + 30$$

 $126 = 4 * 30 + 6$
 $30 = 5 * 6 + 0$

Bézout's theorem

If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb.

$$\forall a \ \forall b \ ((a > 0 \land b > 0) \rightarrow \exists s \ \exists t \ (gcd(a,b) = sa + tb))$$

• Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 1 (Compute GCD & Keep Tableau Information):

a b b a mod b = r b r
$$a = q * b + r$$
 $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ $a = q * b + r$ $35 = 1 * 27 + 8$

$$a = q * b + r$$

 $35 = 1 * 27 + 8$

Can use Euclid's Algorithm to find s, t such that

$$\gcd(a,b) = sa + tb$$

Step 1 (Compute GCD & Keep Tableau Information):

a b b a mod b = r b r

$$gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$$

 $= gcd(8, 27 \mod 8) = gcd(8, 3)$
 $= gcd(3, 8 \mod 3) = gcd(3, 2)$
 $= gcd(2, 3 \mod 2) = gcd(2, 1)$
 $= gcd(1, 2 \mod 1) = gcd(1, 0)$

a = q * b + r
 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$

$$a = q * b + r$$

 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 2 (Solve the equations for r):

$$a = q * b + r$$
 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$

$$r = a - q * b$$

 $8 = 35 - 1 * 27$

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 2 (Solve the equations for r):

$$a = q * b + r$$
 $r = a - q * b$
 $35 = 1 * 27 + 8$ $8 = 35 - 1 * 27$
 $27 = 3 * 8 + 3$ $3 = 27 - 3 * 8$
 $8 = 2 * 3 + 2$ $2 = 8 - 2 * 3$
 $3 = 1 * 2 + 1$ $1 = 3 - 1 * 2$

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$(1) = 3 - 1 * 2$$

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

Plug in the def of 2

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

$$1 = 3 - 1*(8 - 2*3)$$

= $3 - 8 + 2*3$ Re-arrange into
= $(-1)*8 + 3*3$ 3's and 8's

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Plug in the def of 2

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

1 = 3 - 1 * (8 - 2 * 3)= 3 - 8 + 2 * 3 Re-arrange into = (-1) * 8 + 3 * 3 3's and 8's Plug in the def of 3 = (-1) * 8 + 3 * (27 - 3 * 8)= (-1) * 8 + 3 * 27 + (-9) * 8= 3 * 27 + (-10) * 8 Re-arrange into 8's and 27's = 3 * 27 + (-10) * (35 - 1 * 27)= 3*27 + (-10)*35 + 10*27**Re-arrange into** = 13 * 27 + (-10) * 3527's and 35's

Plug in the def of 2

Multiplicative inverse $\mod m$

Let $0 \le a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv_m 1$.

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

mod 7

Х	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 10

Multiplicative inverse mod m

Suppose
$$gcd(a, m) = 1$$

By Bézout's Theorem, there exist integers s and t such that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):

$$1 = sa + tm \equiv_m sa$$

So... we can compute multiplicative inverses with the extended Euclidean algorithm

These inverses let us solve modular equations...

$$gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1$$

$$gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1$$

$$26 = 3 * 7 + 5$$

$$7 = 1 * 5 + 2$$

$$5 = 2 * 2 + 1$$

$$gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1$$

$$26 = 3 * 7 + 5 \qquad 5 = 26 - 3 * 7$$

$$7 = 1 * 5 + 2 \qquad 2 = 7 - 1 * 5$$

$$5 = 2 * 2 + 1 \qquad 1 = 5 - 2 * 2$$

$$gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1$$

$$26 = 3 * 7 + 5 \qquad 5 = 26 - 3 * 7$$

$$7 = 1 * 5 + 2 \qquad 2 = 7 - 1 * 5$$

$$5 = 2 * 2 + 1 \qquad 1 = 5 - 2 * 2$$

$$1 = 5 - 2*(7-1*5)$$

$$= (-2)*7 + 3*5$$

$$= (-2)*7 + 3*(26-3*7)$$

$$= (-11)*7 + 3*26$$

Solve: $7x \equiv_{26} 1$

$$gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1$$

$$26 = 3 * 7 + 5 \qquad 5 = 26 - 3 * 7$$

$$7 = 1 * 5 + 2 \qquad 2 = 7 - 1 * 5$$

$$5 = 2 * 2 + 1 \qquad 1 = 5 - 2 * 2$$

$$1 = 5 - 2*(7-1*5)$$

$$= (-2)*7 + 3*5$$

$$= (-2)*7 + 3*(26-3*7)$$

$$= (-11)*7 + 3*26$$
Multiplicative inverse of 7 modulo 26

Now $(-11) \mod 26 = 15$. So, x = 15 + 26k for $k \in \mathbb{Z}$.

Example of a more general equation

Now solve: $7y \equiv_{26} 3$

We already computed that 15 is the multiplicative inverse of 7 modulo 26. That is, $7 \cdot 15 \equiv_{26} 1$

If y is a solution, then multiplying by 15 we have

$$15 \cdot 7 \cdot y \equiv_{26} 15 \cdot 3$$

Substituting $15 \cdot 7 \equiv_{26} 1$ into this on the left gives

$$y = 1 \cdot y \equiv_{26} 15 \cdot 3 \equiv_{26} 19$$

This shows that <u>every</u> solution y is congruent to 19.

Example of a more general equation

Now solve: $7y \equiv_{26} 3$

Multiplying both sides of $y \equiv_{26} 19$ by 7 gives

$$7y \equiv_{26} 7 \cdot 19 \equiv_{26} 3$$

So, any $y \equiv_{26} 19$ is a solution.

Thus, the set of numbers of the form y = 19 + 26k, for any k, are exactly solutions of this equation.

Math mod a prime is especially nice

gcd(a, m) = 1 if m is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

mod 7

Multiplicative Inverses and Algebra

Adding to both sides is an equivalence:

$$x \equiv_m y$$

$$x + c \equiv_m y + c$$

The same is not true of multiplication... unless we have a multiplicative inverse $cd \equiv_m 1$

$$x \equiv_m y \times c$$

$$cx \equiv_m cy$$

Modular Exponentiation mod 7

Х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a ³	a ⁴	a ⁵	a ⁶
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

• Compute 78365⁸¹⁴⁵³

• Compute 78365⁸¹⁴⁵³ mod 104729

- Output is small
 - need to keep intermediate results small

Small Multiplications

Since $b = qm + (b \mod m)$, we have $b \mod m \equiv_m b$.

And since $c = tm + (c \mod m)$, we have $c \mod m \equiv_m c$.

Multiplying these gives $(b \mod m)(c \mod m) \equiv_m bc$.

By the Lemma from a few lectures ago, this tells us $bc \mod m = (b \mod m)(c \mod m) \mod m$.

Okay to mod b and c by m before multiplying if we are planning to mod the result by m

Repeated Squaring – small and fast

```
Since b \mod m \equiv_m b and c \mod m \equiv_m c
we have bc \mod m = (b \mod m)(c \mod m) \mod m
```

```
So a^2 \mod m = (a \mod m)^2 \mod m

and a^4 \mod m = (a^2 \mod m)^2 \mod m

and a^8 \mod m = (a^4 \mod m)^2 \mod m

and a^{16} \mod m = (a^8 \mod m)^2 \mod m

and a^{32} \mod m = (a^{16} \mod m)^2 \mod m
```

Can compute $a^k \mod m$ for $k = 2^i$ in only i steps What if k is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101

```
81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^5 + 2^3 + 2^2 + 2^0
     a^{81453} = a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^9} \cdot a^{2^5} \cdot a^{2^3} \cdot a^{2^2} \cdot a^{2^0}
 a^{81453} \mod m =
(...((((((a<sup>2<sup>16</sup></sup> mod m
a<sup>2<sup>13</sup></sup> mod m) mod m
a<sup>2<sup>12</sup></sup> mod m) mod m
                         a<sup>211</sup> mod m) mod m
                            a<sup>2<sup>10</sup></sup> mod m) mod m
a<sup>2<sup>9</sup></sup> mod m) mod m
                                       a<sup>25</sup> mod m) mod m
                                             a<sup>23</sup> mod m) mod m · a<sup>22</sup> mod m) mod m ·
                                                         a<sup>20</sup> mod m) mod m
```

Uses only 16 + 9 = 25multiplications

The fast exponentiation algorithm computes

 $a^k \mod m$ using $\leq 2\log k$ multiplications $\mod m$

Fast Exponentiation: $a^k \mod m$ for all k

Another way....

```
a^{2j} \operatorname{mod} m = (a^{j} \operatorname{mod} m)^{2} \operatorname{mod} ma^{2j+1} \operatorname{mod} m = ((a \operatorname{mod} m) \cdot (a^{2j} \operatorname{mod} m)) \operatorname{mod} m
```

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a,k/2,modulus);
        return (temp * temp) % modulus;
    } else {
        long temp = FastModExp(a,k-1,modulus);
        return (a * temp) % modulus;
    }
}
```

$$a^{2j} \operatorname{mod} m = (a^{j} \operatorname{mod} m)^{2} \operatorname{mod} m$$

$$a^{2j+1} \operatorname{mod} m = ((a \operatorname{mod} m) \cdot (a^{2j} \operatorname{mod} m)) \operatorname{mod} m$$

Using Fast Modular Exponentiation

 Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption

RSA

- Vendor chooses random 512-bit or 1024-bit primes p, q and 512/1024-bit exponent e. Computes $m = p \cdot q$
- Vendor broadcasts (m, e)
- To send a to vendor, you compute $C = a^e \mod m$ using fast modular exponentiation and send C to the vendor.
- Using secret p, q the vendor computes d that is the multiplicative inverse of e mod (p-1)(q-1).
- Vendor computes $C^d \mod m$ using fast modular exponentiation.
- Fact: $a = C^d \mod m$ for 0 < a < m unless $p \mid a$ or $q \mid a$