
CSE 311: Foundations of Computing

Lecture 13:  Primes, GCD



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− in particular, since 𝑐 = 𝑐 is true, we can “+ 𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− in particular, since 𝑐 = 𝑐 is true, we can “×𝑐” to both sides

Recall: Familiar Properties of “=”

These are the facts that allow us to 
use algebra to solve problems



Modular Arithmetic: Basic Property

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡" 𝑏 and 𝑏 ≡" 𝑐. 

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡" 𝑏 and 𝑏 ≡" 𝑐. Then, by the 
previous property, we have 𝑎 mod𝑚 = 𝑏 mod𝑚
and 𝑏 mod𝑚 = 𝑐 mod𝑚. 

Putting these together, we have 𝑎 mod𝑚 = 𝑐 mod𝑚, 
which says that 𝑎 ≡" 𝑐, by the previous property.

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡" 𝑏 and 𝑐 ≡" 𝑑.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡" 𝑏 and 𝑐 ≡" 𝑑.  Unrolling the definitions, we 
can see that 𝑎 –𝑏 = 𝑘𝑚 and 𝑐 – 𝑑 = 𝑗𝑚 for some 𝑘, 𝑗 ∈ ℤ.

Adding the equations together gives us 
(𝑎 + 𝑐) – (𝑏 + 𝑑) = 𝑚(𝑘 + 𝑗).

By the definition of congruence, we have 𝑎 + 𝑐 ≡" 𝑏 + 𝑑.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡" 𝑏 and 𝑐 ≡" 𝑑. 

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡" 𝑏 and 𝑐 ≡" 𝑑.  Unrolling the definitions, we 
can see that 𝑎 –𝑏 = 𝑘𝑚 and 𝑐 – 𝑑 = 𝑗𝑚 for some 𝑘, 𝑗 ∈ ℤ or 
equivalently, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑. 

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡" 𝑏 and 𝑐 ≡" 𝑑.  Unrolling the definitions, we 
can see that 𝑎 –𝑏 = 𝑘𝑚 and 𝑐 – 𝑑 = 𝑗𝑚 for some 𝑘, 𝑗 ∈ ℤ or 
equivalently, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 𝑏𝑑. Re-arranging, this becomes 
𝑎𝑐 – 𝑏𝑑 = 𝑚(𝑘𝑗𝑚 + 𝑘𝑑 + 𝑏𝑗).

This says 𝑎𝑐 ≡" 𝑏𝑑 by the definition of congruence.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Properties

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Properties

“≡𝒎” allows us to solve problems in modular arithmetic, e.g.
• add / subtract numbers from both sides of equations
• chains of “≡𝒎” values shows first and last are “≡𝒎”
• substitute “≡𝒎” values in equations (not proven yet)

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.



Substitution Follows From Other Properties

Given 2𝑦 + 3𝑥 ≡' 25 and 𝑥 ≡' 7,
show that 2𝑦 + 21 ≡' 25. (substituting 7 for 𝑥)

Start from 𝑥 ≡' 7

Multiply both sides 3𝑥 ≡' 21

Add to both sides 2y + 3𝑥 ≡' 2𝑦 + 21

Combine ≡'’s 2𝑦 + 21 ≡' 2y + 3𝑥 ≡' 25



Basic Applications of mod

• Two’s Complement
• Hashing 
• Pseudo random number generation



• Represent integer 𝑥 as sum of powers of 2:

99 = 64 + 32 + 2 + 1 = 26 + 25 + 21 + 20

18 = 16 + 2 = 24 + 21

If 𝑏!"#2!"# +⋯+ 𝑏#2 + 𝑏$ with each 𝑏𝑖 ∈ 0,1
then binary representation is bn-1...b2 b1 b0

• For n = 8:
99:    0110 0011
18:    0001  0010

n-bit Unsigned Integer Representation

Easy to implement arithmetic 𝐦𝐨𝐝 𝟐𝒏
... just throw away bits n+1 and up

2$ | 2$%& so    𝑏$%&2$%& ≡'! 0
for 𝑘 ≥ 0



n-bit Unsigned Integer Representation

• Largest representable number is 2! − 1

2n = 100…000 (n+1 bits)
2n – 1 =   11…111 (n bits)

32 bits
1 = $0.0001
$429,496.7295 max



Sign-Magnitude Integer Representation

𝑛-bit signed integers
Suppose that −2,-. < 𝑥 < 2,-.
First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:   1001  0010

Problem: this has both +0 and -0 (annoying)



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2"#$
𝑥 is represented by the binary representation of 𝑥

Suppose that −2"#$≤ 𝑥 < 0
𝑥 is represented by the binary representation of 𝑥 + 2"
result is in the range 2!"# ≤ 𝑥 < 2!

2!"#0−1−2!"# 2!

+2$

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2"#$
𝑥 is represented by the binary representation of 𝑥

Suppose that −2"#$≤ 𝑥 < 0
𝑥 is represented by the binary representation of 𝑥 + 2"
result is in the range 2!"# ≤ 𝑥 < 2!

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
99:    0110 0011
-18:    1110 1110 (-18 + 256 = 238)

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2"#$
𝑥 is represented by the binary representation of 𝑥

Suppose that −2"#$≤ 𝑥 < 0
𝑥 is represented by the binary representation of 𝑥 + 2"
result is in the range 2!"# ≤ 𝑥 < 2!

Key property: Twos complement representation of any number 𝒚
is equivalent to 𝒚𝐦𝐨𝐝 𝟐𝒏 so arithmetic works 𝐦𝐨𝐝 𝟐𝒏

Key property: First bit is still the sign bit!

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

𝑦 + 2$ ≡'! 𝑦



Two’s Complement Representation

• For                         ,  −𝑥 is represented by the 
binary representation of −𝑥 + 2!
– How do we calculate –x from x?
– E.g., what happens for “return –x;” in Java?

• To compute this, flip the bits of 𝑥 then add 1!
– All 1’s string is  2, − 1, so

Flip the bits of 𝑥 means replace 𝑥 by 2, − 1 − 𝑥
Then add 1 to get −𝑥 + 2,

−𝑥 + 2$ = 2$ − 1 − x + 1



More Number Theory
Primes and GCD



Primality

An integer p greater than 1 is called prime if the 
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 
prime is called composite.

𝑝 > 1 Ù ∀x ((𝑥 | 𝑝)® ((𝑥 = 1) ∨ (𝑥 = 𝑝)))

𝑝 > 1 Ù ∃x ((𝑥 | 𝑝) Ù (𝑥 ≠ 1) Ù (𝑥 ≠ 𝑝))



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a 
“unique” prime factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803



Algorithmic Problems

• Multiplication
– Given primes 𝑝., 𝑝7, …, 𝑝8, calculate their 

product 𝑝.𝑝7…𝑝8
• Factoring

– Given an integer 𝑛, determine the prime 
factorization of 𝑛



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Famous Algorithmic Problems

• Factoring
– Given an integer 𝑛, determine the prime 

factorization of 𝑛
• Primality Testing

– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring is hard
– (on a classical computer)

• Primality Testing is easy



Greatest Common Divisor

GCD(a, b): 
Largest integer 𝑑 such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏

• GCD(100, 125) = 
• GCD(17, 49) = 
• GCD(11, 66) =
• GCD(13, 0) = 
• GCD(180, 252) =

𝑑 is GCD  iff (𝑑 ∣ 𝑎) Ù (𝑑 ∣ 𝑏) Ù ∀𝑥 (((𝑥 ∣ 𝑎) Ù (𝑥 ∣ 𝑏))® (𝑥 ≤ 𝑑))



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is hard!    
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
We will show that every number dividing 𝑎 and 𝑏 also divides 𝑏 and 𝑎 mod 𝑏.
I.e., 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑|(𝑎 mod 𝑏).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
By definition of mod, 𝑎 = 𝑞𝑏 + (𝑎 mod 𝑏) for some integer 𝑞 = 𝑎 div 𝑏.  

Suppose 𝑑|𝑏 and 𝑑|(𝑎 mod 𝑏).
Then 𝑏 = 𝑚𝑑 and (𝑎 mod 𝑏) = 𝑛𝑑 for some integers 𝑚 and 𝑛.    
Therefore  𝑎 = 𝑞𝑏 + (𝑎 mod 𝑏) = 𝑞𝑚𝑑 + 𝑛𝑑 = 𝑞𝑚 + 𝑛 𝑑.
So 𝑑|𝑎.

Suppose 𝑑|𝑎 and 𝑑|𝑏.
Then 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑 for some integers 𝑘 and 𝑗.
Therefore (𝑎 mod 𝑏) = 𝑎 –𝑞𝑏 = 𝑘𝑑 –𝑞𝑗𝑑 = (𝑘 – 𝑞𝑗)𝑑. 
So, 𝑑|(𝑎 mod 𝑏) also.

Since they have the same common divisors, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 mod 𝑏).



Another simple GCD fact

Let a be a positive integer.
We have gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)   gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
if (b == 0) {

return a;
} else {

return gcd(b, a % b);
}

}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎 mod 𝑏 to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.


