CSE 311: Foundations of Computing

Lecture 13: Primes, GCD
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Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.

- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— in particular, since ¢ = c is true, we can “4 ¢” to both sides

e Ifa=bandc =d,then ac = bd.

— in particular, since ¢ = c is true, we can “Xc” to both sides

These are the facts that allow us to
use algebra to solve problems




Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.
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Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.

Suppose that a =,,, b and b =,,, c. Then, by the

previous property, we have a mod m = b mod m
and b mod m = ¢ mod m.

Putting these together, we have a mod m = ¢ mod m,
which says that a =,,, ¢, by the previous property.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.
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Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b = kmandc-d = jmforsomek,j € Z.

Adding the equations together gives us
(a+c)- (b+d) = m(k+)).

By the definition of congruence, we havea + ¢ =,,, b + d.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.
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Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b =kmandc-d = jmforsomek,j € Z or
equivalently, a = km + b and ¢ = jm + d.

Multiplying both together givesus ac = (km + b)(jm + d) =
kjm? + kmd + bjm + bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b =kmandc-d = jmforsomek,j € Z or
equivalently, a = km + b and ¢ = jm + d.

Multiplying both together givesus ac = (km + b)(jm + d) =
kjm? + kmd + bjm + bd. Re-arranging, this becomes
ac -bd = m(kjm + kd + bj).

This says ac =,,, bd by the definition of congruence.



Modular Arithmetic: Properties

Corollary:

Corollary:

Ifa=,, band b =, c, then a =,, c.

fa=,bandc=,,d,thena+c=,, b +d.

Ifa=,,b,thena+c=,, b+c.

Ifa=,, bandc =, d, then ac =,,, bd.

If a =,,, b, then ac =,,, bc.




Modular Arithmetic: Properties

Ifa=,, band b =, c, then a =,, c.

Ifa=,,b,thena+c=,, b+c.

If a =,,, b, then ac =,,, bc.

“=,,” allows us to solve problems in modular arithmetic, e.g.
 add / subtract numbers from both sides of equations
* chains of “=,,,” values shows first and last are “=,,,”
* substitute “=,,,” values in equations (not proven yet)



Substitution Follows From Other Properties

Given 2y +3x =,, 25and x =,,, 7,
show that 2y + 21 =,,, 25. (substituting 7 for x)

Start from X =7

Multiply both sides 3x =,, 21

Add to both sides 2y + 3x =, 2y + 21

Combine =,,,’s 2y + 21 =, 2y + 3x =,,, 25



Basic Applications of mod

 Two’s Complement
* Hashing
* Pseudo random number generation



n-bit Unsighed Integer Representation

* Represent integer x as sum of powers of 2:

99 =64+32+2+1 =26425421420
18 =16+ 2 =24+ 21

If b,,_12" 1 + -+ b2 + by with each b, € {0,1}
then binary representationis b, ....b, b, b,

* Forn=38:
99: 0110 0011 Easy to implement arithmetic mod 2"
18: 0001 0010 ... Just throw away bits n+1 and up

2n | 2tk 5o b k2K =50 0
fork =0



n-bit Unsighed Integer Representation

* Largest representable numberis 2™ — 1

2" =100...000 (n+1 bits)
2"—-1= 11..111 (n bits)

THE WAL STREET JOURNAL
Berkshire Hathaway’s Stock Price Is Too

Much for Computers

32 bits Berkshire Hathaway Inc. (BRK-A)

1 =%$0.0001 436,401.00 :679.50 (+0.16%)

$429,496.7295 max ~ sccion



Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that —2""1 < x < 2n1
First bit as the sign, n — 1 bits for the value

99=64+32+2+1
18=16+2

Forn = 8:

99: 0110 0011
-18: 1001 0010

Problem: this has both +0 and -0 (annoying)



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

—2n-1 -1 0 2n-1 2"

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2

0000 0001 o0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

9=64+32+2+1
18 =16 +2

Forn = 8:
99: 0110 0011
-18: 1110 1110 (-18 + 256 = 238)

1111



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y
IS equivalent to y mod 2™ so arithmetic works mod 2™

y+2t =,y



Two’s Complement Representation

e For 0 <x <2™1, —xisrepresented by the
binary representation of —x + 2"

— How do we calculate —x from x?
— E.g., what happens for “return -x;” in Java?

—x+2"=(2"—1)—x+1

* To compute this, flip the bits of x then add 1!
— All 1’s string is 2™ — 1, so
Flip the bits of x means replace x by 2™ — 1 — x
Then add 1 to get —x + 2™



More Number Theory
Primes and GCD



Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

p>1AVx((x|p)>((x=1)V(x=p)))

A positive integer that is greater than 1 and is not
prime is called composite.

p>1 AAx((x|p)A(x#1)A(x #Dp))



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
“‘unique” prime factorization

48 = 2¢222+3

591 =3« 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 « 3,803



Algorithmic Problems

* Multiplication

— Given primes p4, p,, ..., Pi, calculate their
product p;p, ... px
* Factoring

— Given an integer n, determine the prime
factorization of n



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514

19597459856902143413

| I
——

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317

43087737814467999489

AN 4

7N

3674604366679959042824463379962795263227/91581643
430876426760322838157396665112792333734171433968

10270092798736308917



Famous Algorithmic Problems

* Factoring

— Given an integer n, determine the prime
factorization of n

* Primality Testing
— Given an integer n, determine if n is prime

* Factoring is hard
— (on a classical computer)

* Primality Testing is easy



Greatest Common Divisor

GCD(a, b):
Largest integer d suchthatd | aand d | b

. GCD(100, 125)
« GCD(17, 49)
 GCD(11, 66)
. GCD(13, 0)

. GCD(180, 252)

disGCD iff (dla)Aa(dIb)AVx((xla)A(x]|b))—>(x <d))



GCD and Factoring

a=2%+352+7+11=46,200
b=2¢32+537+13=204,750

GCD(a, b) = 2min(3,1) ¢ 3min(1,2) ¢ §MIin(2,3) ¢ 7min(1,1) ¢ 14 Min(1,0) ¢ 4 3min(0,1)

Factoring is hard!
Can we compute GCD(a,b) without factoring?



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
We will show that every number dividing a and b also divides b and a mod b.

l.e., d|a and d|b iff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a,b) = gcd(b, a mod b)

Proof:
By definition of mod, a = gb + (a mod b) for some integer ¢ = a div b.

Suppose d|b and d|(a mod b).

Then b = md and (a mod b) = nd for some integers m and n.
Therefore a = gb + (a mod b) = gmd + nd = (gm + n)d.
Sod|a.

Suppose d|a and d|b.
Then a = kd and b = jd for some integers k and j.

Therefore (a mod b) = a-qb = kd -qjd = (k -qj)d.
So, d|(a mod b) also.

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B



Another simple GCD fact

Let a be a positive integer.
We have gcd(a,0) = a.



Euclid’s Algorithm

gcd(a, b) = ged(b, a mod b) gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
if (b == 0) {
return a,;
} else {
return gcd(b, a % b);
}
}

Note: gcd(b, a) = gcd(a, b)




Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =



Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6



