# **CSE 311: Foundations of Computing**

Lecture 13: Primes, GCD



# Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
  - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
  - in particular, since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
  - in particular, since c = c is true, we can " $\times c$ " to both sides

These are the facts that allow us to use algebra to solve problems

#### **Modular Arithmetic: Basic Property**

Let m be a positive integer. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

#### **Modular Arithmetic: Basic Property**

Let m be a positive integer. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

Suppose that  $a \equiv_m b$  and  $b \equiv_m c$ .

#### **Modular Arithmetic: Basic Property**

Let m be a positive integer. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

Suppose that  $a \equiv_m b$  and  $b \equiv_m c$ . Then, by the previous property, we have  $a \mod m = b \mod m$  and  $b \mod m = c \mod m$ .

Putting these together, we have  $a \mod m = c \mod m$ , which says that  $a \equiv_m c$ , by the previous property.

#### **Modular Arithmetic: Addition Property**

Let m be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

#### **Modular Arithmetic: Addition Property**

Let m be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ .

#### **Modular Arithmetic: Addition Property**

Let m be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Unrolling the definitions, we can see that a - b = km and c - d = jm for some  $k, j \in \mathbb{Z}$ .

Adding the equations together gives us (a + c) - (b + d) = m(k + j).

By the definition of congruence, we have  $a + c \equiv_m b + d$ .

Let m be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Let m be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ .

Let m be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Unrolling the definitions, we can see that a - b = km and c - d = jm for some  $k, j \in \mathbb{Z}$  or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us  $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$ .

Let m be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Unrolling the definitions, we can see that a - b = km and c - d = jm for some  $k, j \in \mathbb{Z}$  or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us  $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$ . Re-arranging, this becomes ac - bd = m(kjm + kd + bj).

This says  $ac \equiv_m bd$  by the definition of congruence.

#### **Modular Arithmetic: Properties**

If 
$$a \equiv_m b$$
 and  $b \equiv_m c$ , then  $a \equiv_m c$ .

If 
$$a \equiv_m b$$
 and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Corollary: If  $a \equiv_m b$ , then  $a + c \equiv_m b + c$ .

If 
$$a \equiv_m b$$
 and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Corollary: If  $a \equiv_m b$ , then  $ac \equiv_m bc$ .

#### **Modular Arithmetic: Properties**

If 
$$a \equiv_m b$$
 and  $b \equiv_m c$ , then  $a \equiv_m c$ .

If 
$$a \equiv_m b$$
, then  $a + c \equiv_m b + c$ .

If 
$$a \equiv_m b$$
, then  $ac \equiv_m bc$ .

- " $\equiv_m$ " allows us to solve problems in modular arithmetic, e.g.
  - add / subtract numbers from both sides of equations
  - chains of " $\equiv_m$ " values shows first and last are " $\equiv_m$ "
  - substitute " $\equiv_m$ " values in equations (not proven yet)

#### Substitution Follows From Other Properties

Given 
$$2y + 3x \equiv_m 25$$
 and  $x \equiv_m 7$ , show that  $2y + 21 \equiv_m 25$ . (substituting 7 for  $x$ )

$$x \equiv_m 7$$

Multiply both sides  $3x \equiv_m 21$ 

$$3x \equiv_m 21$$

Add to both sides

$$2y + 3x \equiv_m 2y + 21$$

Combine 
$$\equiv_m$$
's

$$2y + 21 \equiv_m 2y + 3x \equiv_m 25$$

# **Basic Applications of mod**

- Two's Complement
- Hashing
- Pseudo random number generation

#### n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2:

99 = 
$$64 + 32 + 2 + 1$$
 =  $2^6 + 2^5 + 2^1 + 2^0$   
18 =  $16 + 2$  =  $2^4 + 2^1$ 

If  $b_{n-1}2^{n-1} + \cdots + b_12 + b_0$  with each  $b_i \in \{0,1\}$  then binary representation is  $b_{n-1}...b_2 b_1 b_0$ 

• For n = 8:

99: 0110 0011

18: 0001 0010

Easy to implement arithmetic  $mod 2^n$  ... just throw away bits n+1 and up

$$2^n \mid 2^{n+k}$$
 so  $b_{n+k} 2^{n+k} \equiv_{2^n} 0$  for  $k \ge 0$ 

#### n-bit Unsigned Integer Representation

• Largest representable number is  $2^n - 1$ 

$$2^{n} = 100...000$$
 (n+1 bits)  
 $2^{n} - 1 = 11...111$  (n bits)

#### THE WALL STREET JOURNAL.

# Berkshire Hathaway's Stock Price Is Too Much for Computers

32 bits 1 = \$0.0001 \$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A)

NYSE - Nasdag Real Time Price. Currency in USD

**436,401.00** +679.50 (+0.16%)

At close: 4:00PM EDT

#### Sign-Magnitude Integer Representation

#### *n*-bit signed integers

Suppose that  $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

$$99 = 64 + 32 + 2 + 1$$
  
 $18 = 16 + 2$ 

For n = 8:

99: 0110 0011

-18: 1001 0010

**Problem**: this has both +0 and -0 (annoying)

Suppose that  $0 \le x < 2^{n-1}$ 

x is represented by the binary representation of xSuppose that  $-2^{n-1} \le x < 0$ 

x is represented by the binary representation of  $x + 2^n$  result is in the range  $2^{n-1} \le x < 2^n$ 



-8 -7 -2 -1 

```
Suppose that 0 \le x < 2^{n-1} x is represented by the binary representation of x Suppose that -2^{n-1} \le x < 0 x is represented by the binary representation of x + 2^n result is in the range 2^{n-1} \le x < 2^n
```

```
6 7 -8 -7 -6 -5 -4
 0
                                                                            -1
0000
     0001
          0010
              0011
                    0100
                         0101
                              0110
                                   0111
                                        1000
                                             1001
                                                  1010
                                                       1011
                                                            1100
                                                                 1101
                                                                      1110
                                                                           1111
```

$$99 = 64 + 32 + 2 + 1$$
  
 $18 = 16 + 2$ 

For n = 8:

99: 0110 0011

-18: 1110 1110

(-18 + 256 = 238)

Suppose that  $0 \le x < 2^{n-1}$ 

x is represented by the binary representation of x

Suppose that  $-2^{n-1} \le x < 0$ 

x is represented by the binary representation of  $x + 2^n$  result is in the range  $2^{n-1} \le x < 2^n$ 

6 7 -8 -7 -6 -5 -4 -1 

**Key property:** First bit is still the sign bit!

**Key property:** Twos complement representation of any number y is equivalent to  $y \mod 2^n$  so arithmetic works  $\mod 2^n$ 

$$y + 2^n \equiv_{2^n} y$$

- For  $0 < x \le 2^{n-1}$ , -x is represented by the binary representation of  $-x + 2^n$ 
  - How do we calculate –x from x?
  - E.g., what happens for "return -x;" in Java?

$$-x + 2^n = (2^n - 1) - x + 1$$

- To compute this, flip the bits of x then add 1!
  - All 1's string is  $2^n 1$ , so

    Flip the bits of x means replace x by  $2^n 1 x$ Then add 1 to get  $-x + 2^n$

# More Number Theory Primes and GCD

## **Primality**

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

$$p > 1 \land \forall x ((x \mid p) \rightarrow ((x = 1) \lor (x = p)))$$

A positive integer that is greater than 1 and is not prime is called *composite*.

$$p > 1 \land \exists x ((x \mid p) \land (x \neq 1) \land (x \neq p))$$

#### **Fundamental Theorem of Arithmetic**

Every positive integer greater than 1 has a "unique" prime factorization

```
48 = 2 • 2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803
```

#### **Algorithmic Problems**

#### Multiplication

– Given primes  $p_1, p_2, ..., p_k$ , calculate their product  $p_1p_2 ... p_k$ 

#### Factoring

- Given an integer n, determine the prime factorization of n

## **Factoring**

#### Factor the following 232 digit number [RSA768]:

 



#### Famous Algorithmic Problems

- Factoring
  - Given an integer n, determine the prime factorization of n
- Primality Testing
  - Given an integer n, determine if n is prime

- Factoring is hard
  - (on a classical computer)
- Primality Testing is easy

#### **Greatest Common Divisor**

```
GCD(a, b):
```

Largest integer d such that  $d \mid a$  and  $d \mid b$ 

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

d is GCD iff  $(d \mid a) \land (d \mid b) \land \forall x (((x \mid a) \land (x \mid b)) \rightarrow (x \leq d))$ 

## **GCD** and Factoring

$$a = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 = 46,200$$

$$b = 2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13 = 204,750$$

$$GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$$

Factoring is hard!

Can we compute GCD(a,b) without factoring?

#### **Useful GCD Fact**

Let a and b be positive integers. We have  $gcd(a,b) = gcd(b, a \mod b)$ 

#### **Proof:**

We will show that every number dividing a and b also divides b and  $a \mod b$ . I.e.,  $d \mid a$  and  $d \mid b$  iff  $d \mid b$  and  $d \mid (a \mod b)$ .

Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.

#### **Useful GCD Fact**

Let a and b be positive integers. We have  $gcd(a,b) = gcd(b, a \mod b)$ 

#### **Proof:**

By definition of mod,  $a = qb + (a \mod b)$  for some integer  $q = a \operatorname{div} b$ .

Suppose d|b and  $d|(a \mod b)$ .

Then b = md and  $(a \mod b) = nd$  for some integers m and n.

Therefore  $a = qb + (a \mod b) = qmd + nd = (qm + n)d$ . So d|a.

Suppose  $d \mid a$  and  $d \mid b$ .

Then a = kd and b = jd for some integers k and j.

Therefore  $(a \mod b) = a - qb = kd - qjd = (k - qj)d$ .

So,  $d \mid (a \mod b)$  also.

Since they have the same common divisors,  $gcd(a, b) = gcd(b, a \mod b)$ .

# **Another simple GCD fact**

Let a be a positive integer. We have gcd(a,0) = a.

#### **Euclid's Algorithm**

```
gcd(a, b) = gcd(b, a mod b) gcd(a, 0) = a
```

```
int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
   if (b == 0) {
      return a;
   } else {
      return gcd(b, a % b);
   }
}
```

Note: gcd(b, a) = gcd(a, b)

## **Euclid's Algorithm**

Repeatedly use  $gcd(a, b) = gcd(b, a \mod b)$  to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) =
```

#### **Euclid's Algorithm**

Repeatedly use  $gcd(a, b) = gcd(b, a \mod b)$  to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6
```