CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications

Last Class: Divisibility

Definition: "b divides a"

For
$$a, b$$
 with $b \neq 0$:
 $b \mid a \leftrightarrow \exists q \ (a = qb)$

Check Your Understanding. Which of the following are true?

$$5 \mid 0$$

5 | 0 iff 0 = 5k

$$0 \mid 5$$
 $2 \mid 3$
0 | 5 iff 5 = 0k 2 | 3 iff 3

Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If $b \mid a$, then, by definition, we have a = qb for some q. The number q is called the quotient.

Dividing both sides by b, we can write this as

$$\frac{a}{b} = q$$

(We want to stick to integers, though, so we'll write a = qb.)

Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If $b \nmid a$, then we end up with a *remainder* r with 0 < r < b. Now,

instead of
$$\frac{a}{b} = q$$
 we have $\frac{a}{b} = q + \frac{r}{b}$

Multiplying both sides by b gives us a = qb + r (A bit nicer since it has no fractions.)

Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If $b \mid a$, then we have a = qb for some q. If $b \nmid a$, then we have a = qb + r for some q, r with 0 < r < b.

In general, we have a = qb + r for some q, r with $0 \le r < b$, where r = 0 iff $b \mid a$.

Division Theorem

For a, b with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide b into a, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

Note: $r \ge 0$ even if a < 0. Not quite the same as a % d.

div and mod

$$x = 7 \cdot (x \text{ div } 7) + (x \text{ mod } 7)$$

Ordinary arithmetic

$$2 + 3 = 5$$

Arithmetic on a Clock

$$2 + 3 = 5$$

$$23 = 3 \cdot 7 + 2$$

If a = 7q + r, then $r = a \mod b$ is where you stop after taking a steps on the clock

Arithmetic, mod 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - b)$

New notion of "sameness" that will help us understand modular arithmetic

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - b)$

The standard math notation is

$$a \equiv b \pmod{m}$$

A chain of equivalences is written

$$a \equiv b \equiv c \equiv d \pmod{m}$$

Many students find this confusing, so we will use \equiv_m instead.

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

$$x \equiv_2 0$$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

$$-1 \equiv_5 19$$

This statement is true. 19 - (-1) = 20 which is divisible by 5

$$y \equiv_7 2$$

This statement is true for y in { ..., -12, -5, 2, 9, 16, ...}. In other words, all y of the form 2+7k for k an integer.

Let a, b, m be integers with m > 0.

Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem,
$$a = mq + (a \mod m)$$
 and $b = ms + (b \mod m)$ for some integers q , s .

Goal: show $a \equiv_m b$, i.e., $m \mid (a - b)$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

```
By the division theorem, a = mq + (a \mod m) and b = ms + (b \mod m) for some integers q,s.
```

```
Then, a - b = (mq + (a \mod m)) - (ms + (b \mod m))
= m(q - s) + (a \mod m - b \mod m)
= m(q - s) since a \mod m = b \mod m
```

Goal: show $a \equiv_m b$, i.e., $m \mid (a - b)$.

```
Let a, b, m be integers with m > 0.
Then, a \equiv_m b if and only if a \mod m = b \mod m.
```

Suppose that $a \mod m = b \mod m$.

```
By the division theorem, a = mq + (a \mod m) and b = ms + (b \mod m) for some integers q,s.
```

```
Then, a - b = (mq + (a \mod m)) - (ms + (b \mod m))
= m(q - s) + (a \mod m - b \mod m)
= m(q - s) since a \mod m = b \mod m
```

Therefore, $m \mid (a - b)$ and so $a \equiv_m b$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

The mod m function vs the \equiv_m predicate

- What we have just shown
 - The mod m function maps any integer a to a remainder $a \mod m \in \{0,1,...,m-1\}$.
 - Imagine grouping together all integers that have the same value of the $\mod m$ function That is, the same remainder in $\{0,1,\ldots,m-1\}$.
 - The \equiv_m predicate compares integers a, b. It is true if and only if the $\mod m$ function has the same value on a and on b.

That is, a and b are in the same group.

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - in particular, since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - in particular, since c = c is true, we can " $\times c$ " to both sides

These are the facts that allow us to use algebra to solve problems

Let m be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Let m be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

Let m be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$. Then, by the previous property, we have $a \mod m = b \mod m$ and $b \mod m = c \mod m$.

Putting these together, we have $a \mod m = c \mod m$, which says that $a \equiv_m c$, by the previous property.