CSE 311: Foundations of Computing

Lecture 10: Proof Strategies & Number Theory
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“Yes, yes, I know that, Sidney ... everybody knows
that!...But look: Four wrongs squared, minus two
wrongs to the fourth power, divided by this
formula, do make a right.”



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

Since x and y were arbitrary, the 3. (0dd(x) A Odd(y)) — Even(x+y)
sum of any odd integers is even. 4. vx Yy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer

2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) AOdd(y)  Assumption
SO X+Y is even. 3.9 Even(x+y)
Since x and y were arbitrary, the 3. (Odd(x) A Odd(y)) - Even(x+y)  DPR
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Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letx be an arbitrary integer
2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) AOdd(y)  Assumption
3.2 0Odd(x) Elim A: 2.1
3.3 0Odd(y) Elim A: 2.1
SO X+y is even. 3.9 Even(x+y)

3. (Odd(x) A Odd(y)) — Even(x+y) DPR

Since x and y were arbitrary, the
4. VxVy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V

sum of any odd integers is even.



English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, we have x = 2a+1 for

some integer a and y = 2b+1 for
some integer b.

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

3.2 0Odd(x) Elim A: 2.1
3.3 0dd(y) Elim A: 2.1
3.4 3Fz(x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim 3:2.4
3.6 3Jz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3: 2.5
3.9 3z (x+y=2z) Intro 3: 2.4
3.10 Even(x+y) Def of Even
3. (Odd(x) A Odd(y)) — Even(x+y) DPR

4, Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for
some integer a and y = 2b+1 for
some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

3.2 0Odd(x) Elim A: 2.1

3.3 0dd(y) Elim A: 2.1

3.4 3Fz(x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim 3:2.4

3.6 3Jz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3: 2.5

3.8 x+y=2(a+b+1) Algebra

3.9 3z (x+y=2z) Intro 3: 2.4

3.10 Even(x+y) Def of Even

3. (Odd(x) A Odd(y)) — Even(x+y) DPR

4, Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Domain of Discourse

Even and Odd  |Even(x)=3y (x = 2y)

Odd(x) =dJy (X — Zy + 1) Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x andy be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for
some integer a and y = 2b+1 for some integer b. Their
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so
x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even. B




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x andy be arbitrary odd integers.

Then, x = 2a+1 for some integer a and y = 2b+1 for some
integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 =

2(a+b+1), so x+v is, by definition, even.

Since x and y were arbitrary, the sum of any two odd

Integers is even.
N

Vx Yy ((0dd(x) A Odd(y))—Even(x+y))




Domain of Discourse

Rational Numbers  Real Numbers |

* A real number x is rational iff there exist integers a
and b with b#0 such that x=a/b.

Rational(x) := 3a 3b (((Integer(a) A Integer(b)) A (x=a/b)) A b0)




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”
Formally, prove Vx Yy ((Rational(x) A Rational(y)) — Rational(xy))



Domain of Discourse

Rationality

Real Numbers

Predicate Definitions

Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary reals.
Suppose x and y are rational.

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the

product of any two rationals is rational. m



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. m




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

Thus, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”
OR “If x and y are rational, then xy is rational.”

Recall that unquantified variables (nhot constants)
are implicitly for-all quantified.

Vx Vy ((Rational(x) A Rational(y)) — Rational(xy))




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Letcand-ybearbitraryrationals-

Suppose x and y are rational.

Then, x = a/b for some integers a, b, where b0, and

v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

—Since-xandy-were-arbitrary-we-have shownthat the-
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Last class: English Proofs

* High-level language let us work more quickly

— should not be necessary to spill out every detail
— examples so far

skipping Intro A and Elim A (and hence, Commutativity and Associativity)

skipping Double Negation

not stating existence claims (immediately apply Elim 3 to name the object)

not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

— (list will grow over time)

* English proof is correct if the reader believes they
could translate it into a formal proof

— the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove —Vx P(x), prove 3I—P(x):

* Equivalent by De Morgan’s Law
* All we need to do that is find an x where P(x) is false
* This example is called a counterexample to Vx P(x).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is hot odd — a counterexample
to the claim that every prime number is odd. B

An English proof does not need to cite De Morgan’s law.



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to proving p — q.

1.1. —q Assumption

1.3.—p
1. —q—> —p Direct Proof
2. p—>q Contrapositive: 1



Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—q — —p, which is equivalent to proving p — q.

We will prove the contrapositive.
Suppose —q. 1.1. —q Assumption
Thus, —p. 1.3.—p

1. —q—>—p Direct Proof
2. p—oq Contrapositive: 1



Proof by Contradiction: One way to prove —p

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

1.3. F

1. p—F Direct Proof
2. —pVvF Law of Implication: 1

3. —p Ildentity: 2



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we
have proven —p.

We will argue by contradiction.

Suppose p. 1.1. p Assumption

This is a contradiction. 13. F _
1. p—>F Direct Proof
2. —pvF Law of Implication: 1
3. —p Identity: 2

Often, we will infer —R, where R is a prior fact.
Putting these together, we have RA —R=F



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse

Rationals

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))

Proof: We will argue by contradiction.




Even and Odd

Predicate Definitions

Even(x) =3y (x = 2y)
Odd(x)=3y (x =2y +1)

Domain of Discourse

Rationals

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd.

This is a contradiction.




Predicate Definitions - -
Domain of Discourse

Even(x) =3y (x = 2y) .
Even and Odd 0dd(x) =3y (x = 27 + 1) | Rationals

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd.
Then, x=2a for some integer a, and x=2b+1 for some

integer b.

This is a contradiction. ®




Predicate Definitions - -
Domain of Discourse

Even(x) =3y (x = 2y) .
Even and Odd 0dd(x) =3y (x = 27 + 1) | Rationals

Prove: “No integer is both even and odd.”
Formally, prove — dx (Even(x)AOdd(x))

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd.
Then, x=2a for some integer a, and x=2b+1 for some
integer b. This means 2a=x=2b+1 and hence 2a-2b=1
and so a-b=).. But a-b is an integer while % is not, so
they cannot be equal. This is a contradiction. &

Formally, we’ve shown Integer(’:) A —Integer(}2) = F.




Strategies

* Simple proof strategies already do a lot
— counter examples
— proof by contrapositive
— proof by contradiction

* Later we will cover a specific strategy that applies
to loops and recursion (mathematical induction)



Applications of Predicate Logic

 Remainder of the course will use predicate logic to
prove important properties of interesting objects
— start with math objects that are widely used in CS
— eventually more CS-specific objects

 Encode domain knowledge in predicate definitions
* Then apply predicate logic to infer useful results

Domain of Discourse Predicate Definitions
Integers Even(x) =3y (x = 2-y)
pdd(x) =dy(x=2-y+1) )




Number Theory



Number Theory (and applications to computing)

 Branch of Mathematics with direct relevance to
computing

* Many significant applications
— Cryptography & Security
— Data Structures
— Distributed Systems

* Important toolkit



Modular Arithmetic

 Arithmetic over a finite domain

 Almost all computation is over a finite domain



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 364*24*60*60*100;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)s

----JjGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JGRASP: operation complete.



Domain of Discourse

Divisibility  Integers

Definition: “b divides a”

For a, b with b # 0:

b|a < 3q(a=qb)
N y

Check Your Understanding. Which of the following are true?

51 25 | 5 5|0 3|2

1|5 5| 25 0|5 2|3




Domain of Discourse

Divisibility  Integers

Definition: “b divides a”

For a, b with b # 0:

b|a < 3q(a=qb)
N y

Check Your Understanding. Which of the following are true?

51 25| 5 3|2

5] 1iff 1 =5k 25 | 5iff 5 =25k 5|]0iff0=5k 3]2iff2=3k

@D T o5 2

1]|5iff5=1k 5| 25iff 25 = 5k O]5iff5=0k 2| 3iff3=2k




