CSE 311: Foundations of Computing

Lecture 9: English Proofs & Proof Strategies

THE AXIOM OF CHOICE AULOWS
You To SELECT ONE ELEMENT
FROM EACH SETIN‘H COLLECTION

AND HAVE IT” EXECUTED RS
AN EXAMPLE TO THE OTHERS.

MY MATH TEACHER WAS A BIG
RBELIEVER IN PROOF BY INTIMIDATION.



Last class: Inference Rules for Quantifiers

- P(c) for some ¢ — Vx P(x)
Ix P(x) = P(a) for any a
Elim 3 Ix P(x) —— Let a be arbitrary*”...P(a)
= P(c) for some special** c Vx P(x)

** cisa NEW name. *in the domain of P.




A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) :=3y (x = 2-y)
Odd(x) :=3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)



A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers ) |Even(x) :=3y (x = 2-y)
Odd(x) :=3y (x=2-y+1)

Prove “There is an even number”
Formally: prove dx Even(x)

1. 2=21 Algebra

2. dy(2=2y) Intro3:1

3. Even(2) Definition of Even: 2
4, dx Even(x) Intro 4: 3



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) :=3y (x = 2-y)

Odd(x) :=3dy (x=2-y + 1)

Prime(x) := “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))



A Prime Example

Domain of Discourse

rPredicate Definitions

Integers

Even(x) :=3y (x = 2-y)

Odd(x) :=3dy (x =2y + 1)
Prime(x) := “x > 1 and x#a-b for
\_ all integers a, b with 1<a<x”

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

AL N

2=21

dy (2 = 2-y)

Even(2)

Prime(2)*

Even(2) A Prime(2)

dx (Even(x) A Prime(x))

Algebra

Intro 3: 1

Def of Even: 3
Property of integers
Intro A: 2, 4

Intro 4: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Inference Rules for Quantifiers: First look

— P(c) for some c — Vx P(x)
dx P(X) P(a) (for any a)
Elim 3 Ix P(x) —— ] Let a be arbitrary*”...P(a)
= P(c) for some special** c Vx P(x)

*in the domain of P

** By special, we mean that cis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW name!




Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

3. Vx (Even(x)—Even(x?)) @



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2. Even(a)—Even(a?) @
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even and Odd

Even(x) :=3dy (x=2y)
Odd(x) :=3y (x=2y+1)
Domain: Integers

-

Assumption

........

EEEEEEEE

J

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a)

2.6 Even(a?)
2. Even(a)—Even(a?)
3. Vx (Even(x)—Even(x?))

Assumption

O,

Direct proof
Intro V: 1,2



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 3dy(a=2y) Definition of Even

2.5 3Jy (a?=2y) @

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even and Odd

Even(x) :=3dy (x=2y)
Odd(x) :=3y (x=2y+1)

Domain: Integers

|

1

——| Let a be arbitrary*”...P(a) | [Elim 3

Vx P(x)

3x P(x) ]

=~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a)
2.2 dy(a=2y)

2.5 3Ty (a?=2y)
2.6 Even(a?)
2. Even(a)—Even(a?)

3. Vx (Even(x)—>Even(x?))

Assumption
Definition of Even

_ Need a? = 2c
Intr_o EI @ for some ¢
Definition of Even
Direct proof
Intro V: 1,2



Even and Odd

Even(x) :=3dy (x=2y)
Odd(x) :=3y (x=2y+1)
Domain: Integers

——| Let a be arbitrary*”...P(a)
Vx P(x)

4. Let a be an arbitra

ry integer
Even(a Assumption
Ay (a 2y Definition of Even
2b Elim 3: b
a2 2y Intro 3:
a2 Definition of Even
a2 Direct proof
Intro Vv: 1,2

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a)
2.2 dy(a=2y)
2.3 a=2b

2.5 3Jy (a?=2y)
2.6 Even(a?)
2. Even(a)—Even(a?)

3. Vx (Even(x)—>Even(x?))

Assumption
Definition of Even
Elimd: b
_ Need a? = 2c
Intro 3. @ for some ¢

Definition of Even
Direct proof

Intro V: 1,2



Even(x) :=3dy (x=2y)

Even and Odd Odd(x) =3y (x=2y+1)
Domain: Integers
——| Let a be arbitrary*”...P(a) | [Elim 3 3x P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
2.3 a=2b Elim3: b
2.4 a’=4b’=2(2b?) Algebra
2.5 1y (az = 2y) Intro 3 Used a2 = 2¢ for c=2b?
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



These rules need some caveats...

There are extra conditions on using these rules:

v | Let a be arbitrary*”...P(a)  [Elim3 dx P(x)
. P(c) for some special** c

*in the domain of P. No other ** cisa NEW name.
name in P depends on a List all dependencies for c.

Without those rules, it is possible to infer claims that are false

Intro




Formal Proofs

* In principle, formal proofs are the standard for
what it means to be “proven” in mathematics

— almost all math (and theory CS) done in Predicate Logic

* But they are tedious and impractical
— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 =2 is
several hundred pages long
we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

* Similar situation exists in programming...



Programming

a:=ADD(1, 1)

b:=MOD(a, n)

c :=ADD(arr, b)

d :=LOAD(c)

e :=ADD(arr, 1)

STORE (e, d) arr[i1] = arr[(1+1) % n];

Assembly Language High-level Language



Programming vs Proofs

a:=ADD(1, 1)
b:=MOD(a, n)
c :=ADD(arr, b)
d :=LOAD(c)

e :=ADD(arr, 1)
STORE (e, d)

Assembly Language
for Programs

Given

Given

ElimA: 1

Double Negation: 4
ElimVv: 3,5

Modus Ponens: 2, 6

Assembly Language
for Proofs



Proofs

Given

Given

A Elim: 1 what is the “Java”
Double Negation: 4 for proofs?

V Elim: 3,5

MP: 2, 6

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3,5

MP: 2, 6

English?

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3,5

MP: 2, 6

Math English

Assembly Language High-level Language
for Proofs for Proofs



Proofs

* Formal proofs follow simple well-defined rules and
should be easy for a machine to check

— as assembly language is easy for a machine to execute

* English proofs correspond to those rules but are
designed to be easier for humans to read
— also easy to check with practice
(almost all actual math and theory CS is done this way)

— English proof is correct if the reader believes they could

translate it into a formal proof
(the reader is the “compiler” for English proofs)



Even(x) =3y (x=2y)
Last class: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 3dy(a=2y) Definition of Even

2.3 a=2b Elim 3

2.4 a’=4b?=2(2b%?) Algebra

2.5 3Jy (a?=2y) Intro 3

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V



English Proof: Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove “The square of every even integer is even.”

Let a be an arbitrary integer.

Suppose a is even.
Then, by definition, a = 2b for

some integer b.

Squaring both sides, we get
aZ=4b? = 2(2b?).

So a?is, by definition, even.

Since a was arbitrary, we have
shown that the square of every
even number is even.

2. Even(a)—Even(a?)
3. Vx (Even(x)—Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3Ty (a=2y) Definition
2.3 a=2b Elim 3

2.4 a’?=4b?%=2(2b?) Algebra

2.5 dy(a?=2y) Intro3
2.6 Even(a?) Definition

Direct Proof
Intro V



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some
integer b. Squaring both sides, we get a?= 4b? = 2(2b?).
So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary even integer.

Then, by definition, a = 2b for some integer b. Squaring
both sides, we get a2 =4b? = 2(2b?). So a?is, by
definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B

Vx (Even(x) — Even(x?))



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

Since x and y were arbitrary, the 3. (0dd(x) A Odd(y)) — Even(x+y)
sum of any odd integers is even. 4. vx Yy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer

2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) AOdd(y)  Assumption
SO X+Y is even. 3.9 Even(x+y)
Since x and y were arbitrary, the 3. (Odd(x) A Odd(y)) - Even(x+y)  DPR

sum of any odd integers is even. 4. VxVy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. 1. Letx be an arbitrary integer
2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) AOdd(y)  Assumption
3.2 0Odd(x) Elim A: 2.1
3.3 0Odd(y) Elim A: 2.1
SO X+y is even. 3.9 Even(x+y)

3. (Odd(x) A Odd(y)) — Even(x+y) DPR

Since x and y were arbitrary, the
4. VxVy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V

sum of any odd integers is even.



English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, we have x = 2a+1 for

some integer a and y = 2b+1 for
some integer b.

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

3.2 0Odd(x) Elim A: 2.1
3.3 0dd(y) Elim A: 2.1
3.4 3Fz(x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim 3:2.4
3.6 3Jz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3:2.5
3.9 3z (x+y=2z) Intro 3: 2.4
3.10 Even(x+y) Def of Even
3. (Odd(x) A Odd(y)) — Even(x+y) DPR

4, Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for
some integer a and y = 2b+1 for
some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

3.2 0Odd(x) Elim A: 2.1

3.3 0dd(y) Elim A: 2.1

3.4 3Fz(x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim 3:2.4

3.6 3Jz(y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim 3:2.5

3.8 x+y=2(a+b+1) Algebra

3.9 3z (x+y=2z) Intro 3: 2.4

3.10 Even(x+y) Def of Even

3. (Odd(x) A Odd(y)) — Even(x+y) DPR

4, Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Domain of Discourse

Even and Odd  |Even(x)=3y (x = 2y)

Odd(x) =dJy (X — Zy + 1) Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x andy be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for
some integer a and y = 2b+1 for some integer b. Their
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so
x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even. B




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x andy be arbitrary odd integers.

Then, x = 2a+1 for some integer a and y = 2b+1 for some
integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 =

2(a+b+1), so x+v is, by definition, even.

Since x and y were arbitrary, the sum of any two odd

Integers is even.
N

Vx Yy ((0dd(x) A Odd(y))—Even(x+y))




Domain of Discourse

Rational Numbers  Real Numbers |

* A real number x is rational iff there exist integers a
and b with b#0 such that x=a/b.

Rational(x) := 3a 3b (((Integer(a) A Integer(b)) A (x=a/b)) A b0)




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”
Formally, prove Vx Yy ((Rational(x) A Rational(y)) — Rational(xy))



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. m




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where b0, and
v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the
product of any two rationals is rational. B




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “The product of two rationals is rational.”
OR “If x and y are rational, then xy is rational.”

Recall that unquantified variables (nhot constants)
are implicitly for-all quantified.

Vx Vy ((Rational(x) A Rational(y)) — Rational(xy))




Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Letcand-ybearbitraryrationals-

Suppose x and y are rational.

Then, x = a/b for some integers a, b, where b0, and

v = ¢/d for some integers c,d, where d=0.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd. Furthermore,
ac and bd are integers. By definition, then, xy is rational.

—Since-xandy-were-arbitrary-we-have shownthat the-

4
. . . . .




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption

Then, x = a/b for some integers 1.4 3p 3q ((x = p/q) A Integer(p) A Integer(q) A (q # 0))

a, b, where b=0 and y = c/d for Def Rational: 1.2

some integers c,d, where d=0. 1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
Elim 3: 1.4

1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
?
Then, x = a/b for some integers 1.4 3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))
a, b, where b=0 and y = c/d for Def Rational: 1.2
some integers c,d, where d=0. 1.5 (x = a/b) A Integer(a) A Integer(b) A (b # 0)
Elim3: 1.4

1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.2 Rational(x) Elim A: 1.1
1.3 Rational(y) Elim A: 1.1

1.4 3p3q ((x = p/q) AInteger(p) A Integer(q) A (q # 0))
Then, x = a/b for some integers Def Rational: 1.2
a, b, where b=0 and y = c¢/d for 1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)
some integers c,d, where d=O0. Elim3: 1.4
1.6 3p 3g ((x = p/q) A Integer(p) A Integer(q) A (q # 0))
Def Rational: 1.3
1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
Elim3:1.4



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”
1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

??

Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)
Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

1.8 x =a/b Elim A: 1.5
19 y=c/d Elim A: 1.7
Multiplying, we get xy = (ac)/(bd). 1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

Algebra



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)
1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

1.11 b #0 Elim A: 1.5%

112 d #0 Elim A: 1.7
Since b and d are non-zero, so is bd. 1.13 bd # 0 Prop of Integer Mulit

* 0ops, | skipped steps here...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A (Integer(a) A (Integer(b) A (b # 0)))
;..7 (y = c¢/d) A (Integer(c) A (Integer(d) A (d # 0)))

1.11 Integer(a) A (Integer(b) A (b # 0))

Elim A: 1.5
1.12 Integer(b) A (b # 0) Elim A: 1.11
1.13 b# 0 Elim A: 1.12

We left out the parentheses...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)
1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)
1.13 b+ 0 Elim A: 1.5

1.16 d # 0 Elim A: 1.7
Since b and d are non-zero, so is bd. 117 bd = 0 Prop of Integer Mult



Rationality

Domain of Discourse

Real Numbers

Predicate Definitions

Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Furthermore, ac and bd are integers.

1.5 (x = a/b) A Integer(a) A Integer(b) A (b #+ 0)

1.7 (y = c/d) N Integer(c) A Integer(d) A (d # 0)

1.19 Integer(a)
1.22 Integer(b)
1.24 Integer(c)

1.27 Integer(d)
1.28 Integer(ac)
1.29 Integer(bd)

Elim A: 1.5%
Elim A: 1.5%
Elim A: 1.7%

ElimA: 1.7*
Prop of Integer Mult
Prop of Integer Mult



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

5..10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

1.28 Integer(ac) Prop of Integer Mult
1.29 Integer(bd) Prop of Integer Mult

1.30 Integer(bd) A (bd # 0) Intro A: 1.29, 1.17
1.31 Integer(ac) A Integer(bd) A (bd + 0)

Intro A: 1.28, 1.30
1.32 (xy = (a/b)/(c/d)) A Integer(ac) A

Integer(bd) A (bd # 0) Intro A: 1.10, 1.31
1.33 3p 3 ((xy = p/q) A Integer(p) A Integer(q) A (q # 0))
By definition, then, xy is rational. Intro 3: 1.32

1.34 Rational(xy) Def of Rational: 1.3



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult
Furthermore, ac and bd are integers. 1.99 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.34 Rational(xy) Def of Rational: 1.32

And finally...



Domain of Discourse

Rationality | Real Numbers

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Suppose x and y are rational. 1.1 Rational(x) A Rational(y) Assumption
1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)

1.17 bd # 0 Prop of Integer Mult

_ 1.28 Integer(ac) Prop of Integer Mult
Furthermore, ac and bd are integers. 1.99 Integer(bd) Prop of Integer Mult
By definition, then, xy is rational. 1.34 Rational(xy) Def of Rational: 1.32

1. Rational(x) A Rational(y) — Rational(xy)
Direct Proof



Domain of Discourse

Rationality  Real Numbers |

Predicate Definitions
Rational(x) := 3a 3b (Integer(a) A Integer(b) A (x = a/b) A (b # 0))

Prove: “If x and y are rational, then xy is rational.”

Proof: Suppose x and y are rational.

Then, x = a/b for some integers a, b, where b0, and y =
c/d for some integers c,d, where d=0.

Multiplying, we get that xy = (ac)/(bd). Since b and d are
both non-zero, so is bd. Furthermore, ac and bd are
integers. By definition, then, xy is rational. B

vs more than 35 lines of formal proof



English Proofs

* High-level language let us work more quickly
— should not be necessary to spill out every detail
— reader checks that the writer is not skipping too much

— examples so far

skipping Intro A and Elim A
not stating existence claims (immediately apply Elim 3 to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

— (list will grow over time)

* English proof is correct if the reader believes they
could translate it into a formal proof

— the reader is the “compiler” for English proofs




