CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim
$$\land A \land B$$
 $\therefore A, B$

Intro $\land A; B$
 $\therefore A \land B$

Elim $\lor A \lor B; \neg A$
 $\therefore B$

Intro $\lor A \land B$
 $\therefore A \lor B, B \lor A$

Modus Ponens

 $A; A \to B$

Direct Proof

 $A \Rightarrow B$
 $A \Rightarrow B$

Show that r follows from p, p \rightarrow q and (p \land q) \rightarrow r

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

$$\frac{A \wedge B}{\therefore A, B}$$

Show that r follows from p, p \rightarrow q and (p \land q) \rightarrow r

Given

$$A : A \rightarrow B$$
$$\therefore B$$

2.
$$p \rightarrow q$$

Given

3.
$$p \land q \rightarrow r$$

Given

Show that r follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

2.
$$p \rightarrow q$$
 Given

4.
$$p \wedge q$$
 Intro \wedge : 1, 3

5.
$$p \land q \rightarrow r$$
 Given

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

20. ¬*r*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

MP: 2, (

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove **q**...
 - Notice that at this point, if we prove q, we've proven $\neg r$...

- **19.** *q*
- **20.** ¬*r*

?

MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

This looks like or-elimination.

19. *q*

20. ¬*r*

?

MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.
$$p \wedge s$$
 Given

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

18.
$$\neg \neg s$$

?

¬¬s doesn't show up in the givens but s does and we can use equivalences

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- **17.** *s* ?
- **18.** ¬¬s Double Negation: **17**
- 19. *q* ∨ Elim: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

No holes left! We just

need to clean up a bit.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

17. *s* ∧ Elim: **1**

18. ¬¬s Double Negation: 17

19. *q* ∨ Elim: 3, 18

20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 4. *s* ∧ Elim: 1
- 5. ¬¬s Double Negation: 4
- 6. *q* ∨ Elim: 3, 5
- 7. $\neg r$ MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

 Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \rightarrow r$ intro \lor from 1.

Does not follow! e.g. p=F, q=T, r=F

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim ∧
$$A \land B$$

∴ A, B

Intro ∧ $A; B$
∴ A ∧ B

Elim ∨ $A \lor B; \neg A$
∴ B

Intro ∨ $A \lor B, B \lor A$

Modus Ponens $A; A \to B$
∴ B

Direct Proof

∴ $A \to B$

Not like other rules

Last class: New Perspective

Rather than comparing **A** and **B** as columns, zooming in on just the rows where **A** is true:

р	q	Α	В	
Т	Т	Т	Т	
Т	F	Т	Т	
F	Т	F		
F	F	F		

Given that A is true, we see that B is also true.

$$A \Rightarrow B$$

Last class: New Perspective

Rather than comparing **A** and **B** as columns, zooming in on just the rows where B is true:

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(A \rightarrow B) \equiv T$$

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

We use the direct proof rule

- $\therefore A \rightarrow B$
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.
$$q$$
 Given

2. $(p \land q) \rightarrow r$ Given

This is a proof of $p \rightarrow r$

3.1. p Assumption If we know p is true... Then, we've shown r is true

3. $p \rightarrow r$ Direct Proof

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

```
1. q Given

2. (p \land q) \rightarrow r Given

3.1. p Assumption

3.2. p \land q Intro \land: 1, 3.1

3.3. r MP: 2, 3.2

3. p \rightarrow r Direct Proof
```

Prove: $(p \land q) \rightarrow (p \lor q)$

-There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \wedge q$

Assumption

1.9. $p \vee q$

1. $(p \land q) \rightarrow (p \lor q)$

??

Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \wedge q$

1.2. *p*

1.3. $p \vee q$

1. $(p \land q) \rightarrow (p \lor q)$

Assumption

Elim ∧: **1.1**

Intro ∨: **1.2**

Direct Proof

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.?
$$p \rightarrow r$$

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.2.
$$p \rightarrow q$$
 \wedge Elim: 1.1

1.3.
$$q \rightarrow r$$
 \wedge Elim: 1.1

1.?
$$p \rightarrow r$$

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof

Prove:
$$((\mathbf{p} \to \mathbf{q}) \land (\mathbf{q} \to \mathbf{r})) \to (\mathbf{p} \to \mathbf{r})$$

1.1. $(\mathbf{p} \to \mathbf{q}) \land (\mathbf{q} \to \mathbf{r})$ Assumption

1.2. $\mathbf{p} \to \mathbf{q}$ \land Elim: 1.1

1.3. $\mathbf{q} \to \mathbf{r}$ \land Elim: 1.1

1.4.1. \mathbf{p} Assumption

1.4.? \mathbf{r}

1.4. $\mathbf{p} \to \mathbf{r}$ Direct Proof

1. $((\mathbf{p} \to \mathbf{q}) \land (\mathbf{q} \to \mathbf{r})) \to (\mathbf{p} \to \mathbf{r})$ Direct Proof

Prove:
$$((\mathbf{p} \rightarrow \mathbf{q}) \land (\mathbf{q} \rightarrow \mathbf{r})) \rightarrow (\mathbf{p} \rightarrow \mathbf{r})$$

1.1. $(\mathbf{p} \rightarrow \mathbf{q}) \land (\mathbf{q} \rightarrow \mathbf{r})$ Assumption

1.2. $\mathbf{p} \rightarrow \mathbf{q}$ \land Elim: 1.1

1.3. $\mathbf{q} \rightarrow \mathbf{r}$ \land Elim: 1.1

1.4.1. \mathbf{p} Assumption

1.4.2. \mathbf{q} MP: 1.2, 1.4.1

1.4.3. \mathbf{r} MP: 1.3, 1.4.2

1.4. $\mathbf{p} \rightarrow \mathbf{r}$ Direct Proof

1. $((\mathbf{p} \rightarrow \mathbf{q}) \land (\mathbf{q} \rightarrow \mathbf{r})) \rightarrow (\mathbf{p} \rightarrow \mathbf{r})$ Direct Proof

Inference Rules for Quantifiers: First look

P(c) for some c
$$\exists x P(x)$$
 Elim $\forall x P(x)$ \therefore P(a) (for any a)

$$\exists x P(x)$$
∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Domain of Discourse Integers

Prove
$$(\forall x P(x)) \rightarrow (\exists x P(x))$$

P(c) for some c
∴
$$\exists x P(x)$$
 $\forall x P(x)$
∴ $\Rightarrow P(a)$ for any a

5.
$$(\forall x P(x)) \rightarrow (\exists x P(x))$$
 ?

The main connective is implication so Direct Proof seems good

Domain of Discourse Integers

Prove $\forall x P(x) \rightarrow \exists x P(x)$

P(c) for some c
$$\therefore \exists x P(x)$$

$$\forall x P(x)$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Domain of Discourse Integers

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

P(c) for some c
$$\therefore \exists x P(x)$$

$$\forall x P(x)$$

1.1.
$$\forall x P(x)$$
 Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

$$1.5. \quad \exists x P(x)$$

That requires P(c) for some c.

1.
$$\forall x P(x) \rightarrow \exists x P(x)$$
 Direct Proof

Domain of Discourse Integers

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

Assumption

1.4. P(5)1.5. $\exists x P(x)$?

Intro ∃: 1.4

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

Domain of Discourse Integers

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

P(c) for some c
$$\therefore \exists x P(x)$$

1.1.
$$\forall x P(x)$$

Assumption

1.4.
$$P(5)$$

1.5. $\exists x P(x)$

1.
$$\forall x P(x) \rightarrow \exists x P(x)$$

Direct Proof

Domain of Discourse Integers

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

$$\begin{array}{c}
P(c) \text{ for some } c \\
\therefore \quad \exists x P(x)
\end{array}$$

1.1.
$$\forall x P(x)$$

1.2. P(5)

1.3. $\exists x P(x)$

Assumption

Elim ∀: **1.1**

Intro ∃: **1.2**

Direct Proof

$\mathbf{1.} \quad \forall x \ P(x) \rightarrow \exists x \ P(x)$

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers, define:

 Predicate Definitions

Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$