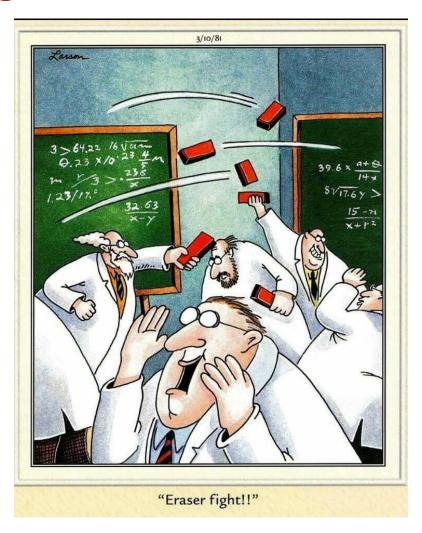
CSE 311: Foundations of Computing

Lecture 7: Logical Inference



Last Class: Quantifiers

We use *quantifiers* to talk about collections of objects.

$$\forall x P(x)$$

P(x) is true for every x in the domain read as "for all x, P of x"

$$\exists x P(x)$$

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more <u>natural</u> if we

1. Notice "domain restriction" patterns

$$\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$$

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

$$\forall x \exists y Greater(y, x)$$

For every positive integer, there is some larger positive integer.

3. Can sometimes drop "all" or "there is"

```
\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))
```

No even prime is greater than 2.

More English Ambiguity

Implicit quantifiers in English are often confusing

Three people that are all friends can form a raiding party

 \forall

Three people that I know are all friends with Mark Zuckerberg

Formal logic removes this ambiguity

- quantifiers can always be specified
- unquantified variables that are not known constants (e.g, π) are implicitly \forall -quantified

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x \, PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Try your intuition! Which one seems right?

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x \, PurpleFruit(x)$ ("All fruits are purple")

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Domain of Discourse {plum, apple}

- (*) PurpleFruit(plum) ∧ PurpleFruit(apple)
 - (a) PurpleFruit(plum) ∨ PurpleFruit(apple)
 - (b) ¬ PurpleFruit(plum) ∨ ¬ PurpleFruit(apple)
 - (c) ¬ PurpleFruit(plum) ∧ ¬ PurpleFruit(apple)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x \ P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x \ P(x) \equiv \forall x \neg P(x)$$

These are equivalent but not equal

They have different English translations, e.g.:

There is no unicorn $\neg \exists x \ Unicorn(x)$

Every animal is not a unicorn $\forall x \neg Unicorn(x)$

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no integer at least as large as every other integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y (y > x)$$

"For every integer, there is a larger integer"

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

"No even prime is greater than 2"

```
\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))

≡ \forall x \neg (Even(x) \land Prime(x) \land Greater(x, 2))

≡ \forall x (\neg (Even(x) \land Prime(x)) \lor \neg Greater(x, 2))

≡ \forall x ((Even(x) \land Prime(x)) \rightarrow \neg Greater(x, 2))

≡ \forall x ((Even(x) \land Prime(x)) \rightarrow LessEq(x, 2))
```

"Every even prime is less than or equal to 2."

We just saw that

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$

Can similarly show that

$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

De Morgan's Laws respect domain restrictions! (It leaves them in place and only negates the other parts.)

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Remain true when domain restrictions are used:

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$
$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

Nested Quantifiers

Quantified variable names don't matter

$$\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$$

Positions of quantifiers can <u>sometimes</u> change

$$\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$$

But: order is important...

Quantifier Order Can Matter

Domain of Discourse

{1, 2, 3, 4}

Predicate Definitions

GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

 $\exists x \ \forall y \ GreaterEq(x, y)))$

		<u> 1</u>	<u>2</u>	<u>3</u>	<u>4</u>	
77	1	Т	F	F	F	
V	2	Т	Т	F	F	
X	3	Τ	Т	Т	F	
	4	Т	Т	Т	Т	

Quantifier Order Can Matter

Domain of Discourse {1, 2, 3, 4}

Predicate Definitions

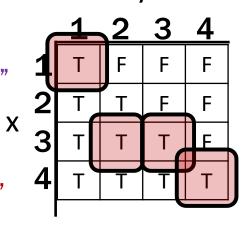
GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

$$\exists x \ \forall y \ GreaterEq(x, y)))$$

"Every number has a number greater than or equal to it."

$$\forall$$
y \exists x GreaterEq(x, y)))



Quantifier Order Can Matter

Domain of Discourse

{1, 2, 3, 4}

Predicate Definitions

GreaterEq(x, y) ::= " $x \ge y$ "

"There is a number greater than or equal to all numbers."

$$\exists x \ \forall y \ GreaterEq(x, y)))$$

"Every number has a number greater than or equal to it."

$$\forall$$
y \exists x GreaterEq(x, y)))

The purple statement requires an entire row to be true.

The red statement requires one entry in each column to be true.

Important: both include the case x = y

Different names does not imply different objects!

Quantification with Two Variables

	1	2	3	4
_	Т	F	F	F
2	Т	Т	F	F
3	Т	Т	Т	F
F	T	Т	Т	Т

		1
expression	when true	when false
$\forall x \forall y P(x, y)$	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x∃yP(x,y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. $(x_1, y), (x_2, y), (x_3, y)$	For any candidate y, there is an x that it doesn't work for.

Logical Inference

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
 - Equivalence is a small part of this

Rather than comparing **A** and **B** as columns, zooming in on just the rows where **A** is true:

р	q	Α	В
Т	Т	Т	
Т	F	Т	
F	Т	F	
F	F	F	

Rather than comparing **A** and **B** as columns, zooming in on just the rows where **A** is true:

р	q	Α	В	
Т	Т	Т	Т	
Т	F	Т	Т	
F	Т	F		
F	F	F		

Given that A is true, we see that B is also true.

$$A \Rightarrow B$$

Rather than comparing **A** and **B** as columns, zooming in on just the rows where **A** is true:

р	q	Α	В
Т	Т	Т	Т
T	F	Т	Т
F	Т	F	?
F	F	F	?

When we zoom out, what have we proven?

Rather than comparing **A** and **B** as columns, zooming in on just the rows where B is true:

р	q	Α	В	$A \rightarrow B$
T	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	T	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(A \rightarrow B) \equiv T$$

Equivalences

$$A \equiv B$$
 and $(A \leftrightarrow B) \equiv T$ are the same

Inference

$$A \Rightarrow B$$
 and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where A is true

Applications of Logical Inference

Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

Proofs

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: *Modus Ponens*

- If A and A → B are both true, then B must be true
- Write this rule as
 A; A → B
 ∴ B
- Given:
 - If it is Wednesday, then you have a 311 class today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

```
Given
```

2.
$$p \rightarrow q$$
 Given 3. $q \rightarrow r$ Given

3.
$$q \rightarrow r$$
 Given

4.

5.

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

```
Given
```

2.
$$p \rightarrow q$$
 Given

3.
$$q \rightarrow r$$
 Given

3.
$$q \rightarrow r$$
 Given
4. q MP: 1, 2

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
1. p \rightarrow q Given
```

2.
$$\neg q$$
 Given

3.
$$\neg q \rightarrow \neg p$$
 Contrapositive: 1

4.
$$\neg p$$
 MP: 2, 3

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Inference Rules

If A is true and B is true

Requirements: A; B

Conclusions: .. C , D

Then, C must

be true

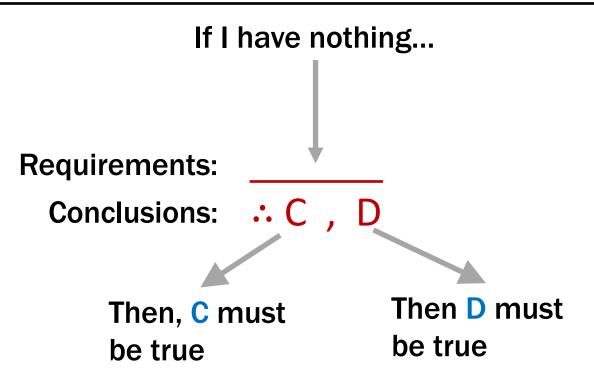
Then D must be true

Example (Modus Ponens):

 $\begin{array}{ccc} A & ; & A \rightarrow B \\ \therefore & B \end{array}$

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules



Example (Excluded Middle):

A V-A must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim
$$\land$$
 $A \land B$
 $\therefore A, B$
 $A \land B$
 $\therefore A \land B$
 $A \land B$
 $A \land B$
 $A \land A \land B$
 $A \land A \land B$

Intro \land $A \land B$
 $A \land A \land B$
 $A \land A \land B$

Modus Ponens $A : A \rightarrow B$

Direct Proof $A \Rightarrow B$

Not like other rules