CSE 311: Foundations of Computing

Lecture 7: Logical Inference

3/10/81

3~64az byus~ §
= .23 B
0.23 x/0'? ‘;"" |

I B3 e
Ve s VA 7

“Eraser fight!!”

Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I)

P(x) is true for every x in the domain QUANTIFIEE
read as “for all x, P of x”

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice “domain restriction” patterns
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”
— dx (Even(x) A Prime(x) A Greater(x, 2))

No even prime is greater than 2.

More English Ambiguity

Implicit quantifiers in English are often confusing

Three people that are all friends can form a raiding party v

Three people that | know are all friends with Mark Zuckerberg 3

Formal logic removes this ambiguity
— quantifiers can always be specified

— unquantified variables that are not known constants (e.g, i)
are implicitly V-quantified

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one seems right?

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Domain of Discourse
{plum, apple}

(*) PurpleFruit(plum) A PurpleFruit(apple)

(a) PurpleFruit(plum) v PurpleFruit(apple)
(b) — PurpleFruit(plum) v — PurpleFruit(apple)
(c) — PurpleFruit(plum) A — PurpleFruit(apple)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

These are equivalent but not equal
They have different English translations, e.g.:
There is no unicorn — dx Unicorn(x)

Every animal is not a unicorn V/x — Unicorn(x)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“There is no integer at least as large as every other integer”

—dxVy (x2y)
= Vx—Vy (x2y)
Vx dy=(x2y)
Vx 3dy (y>x)

“For every integer, there is a larger integer”

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“No even prime is greater than 2”

— 3Ix (Even(x) A Prime(x) A Greater(x, 2))

= Vx —(Even(x) A Prime(x) A Greater(x, 2))

= Vx (—(Even(x) A Prime(x)) v —Greater(x, 2))
= Vx ((Even(x) A Prime(x)) —> —Greater(x, 2))
= VX ((Even(x) A Prime(x)) — LessEq(x, 2))

“Every even prime is less than or equal to 2.”

De Morgan’s Laws for Quantifiers

We just saw that

— 3Ix (P(x) A R(x)) = Vx (P(x) > — R(x))

Can similarly show that

—VX (P(x) = R(x)) = Ix (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

Remain true when domain restrictions are used:

— I (P(x) A R(x)) =Vx(P(x) > — R(x))
— VX (P(x) = R(x)) = Ix (P(x) A = R(x))

Nested Quantifiers

 Quantified variable names don’t matter
Vx Ay P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))

 But: orderis important...

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

GreaterEq(x, y) ::= “x2y”

1 2 3 4
Al T|F | F|F
2| T| T | F|F
X3TTTF
[_4TTTT

Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

“Every number has a number greater than or equal to it.”

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

Yy
2 3 4
TIF|F|F
2T’T E | F
X3T|3§!F
4l T T
| —

Yy dx GreaterEq(x, y)))

Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

2 3 4
u . ” T{F | F|F
There is a number greater than or equal to all numbers. 5
T T|F|F
X Va N
dx Yy GreaterEq(x, y))) glrll1]T
AV
“Every number has a number greater than or equal to it.” [_4 TV T

Yy dx GreaterEq(x, y)))

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

(

.

Important: both include the case x =y

Different names does not imply different objects!

~\

y,

Quantification with Two Variables

HWN PR

—A| |||,
M EIEIRIEN
—Al=H[Tn]|m|W

||| S

expression

when true

when false

Vx YV yP(x,y)

Every pair is true.

At least one pair is false.

dx3yP(x,)

At least one pair is true.

All pairs are false.

vV x3yP(x,vy)

We can find a specific y for
each x.

(Xll yl)i (Xz, y2)l (X3r y3)

Some x doesn’t have a
corresponding y.

dy V xP(x, y)

We can find ONE y that
works no matter what x is.

(Xll y)/ (XZI y)l (X3, y)

For any candidate y, there is
an x that it doesn’t work for.

Logical Inference

e So far we've considered:

— How to understand and express things using
propositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is a small part of this

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

>

T T
T|F

— |-

F
F

|-
M | T

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

>

T T
T|F

T
T

— |-

F
F

_|
M | T

Given that A is true, we see that B is also true.

A=B

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

>

T T
T|F

— |-
— |-

F
F

|-
M | T
2O BN BELV]

When we zoom out, what have we proven?

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where B is true:

M | T

— |
M| |4V
MM P>
M| [

N —]
IR N

When we zoom out, what have we proven?

(A—>B)=T

New Perspective

Equivalences
A =B and (A < B) =T are the same

Inference
A = B and (A — B) =T are the same

Can do the inference by [zooming in]
to the rows where A is true

Applications of Logical Inference

Software Engineering

— EXpress desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

Artificial Intelligence

— Automated reasoning

Algorithm designh and analysis

— e.g., Correctness, Loop invariants.

Logic Programming, e.g. Prolog

— EXpress desired outcome as set of constraints

— Automatically apply logic inference to derive solution

Proofs

« Start with given facts (hypotheses)
e Use rules of inference to extend set of facts
* Result is proved when it is included in the set

An inference rule: Modus Ponens

If Aand A — B are both true, then B must be true

Write thisruleas A:A—B
. B

e Given:
— If it is Wednesday, then you have a 311 class today.
— It is Wednesday.

Therefore, by Modus Ponens:
— You have a 311 class today.

My First Proof!

Show that r follows fromp,p > q,and q —> r

p Given
p —>q Given
q—r Given

A .

Modus Ponens

A:A—>B
s B

My First Proof!

Show that r follows fromp,p > q,and q —> r

1. p Given
2. p —>q Given
3. q—>1r Given
4. q MP: 1, 2
5. r MP: 3, 4

Modus Ponens

A:A—>B
s B

Proofs can use equivalences too

Show that —p follows from p — g and —q

1. p-gq Given

2. —q Given

3. —q—>—p Contrapositive: 1|
4. —p MP: 2, 3

A:A—>B
s B

Modus Ponens

Inference Rules

If A is true and B is true

Requirements: A : B
~C, D

Conclusions:

Then, C must Then D must
be true be true

Example (Modus Ponens):

A;A—>B If | have A and A — B both true,
B Then B must be true.

Axioms: Special inference rules

If | have nothing...

Requirements:

Conclusions: .. C , D
Then, C must Then D must
be true be true

Example (Excluded Middle):

A v—A must be true.

s A Vv—A

Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

-— AAB A:B
Im Intro A
o A; B o A /\ B
Elim Vv A A B : _'A Intro V A
B ~AvB BVA
Modus Ponens A : A — B Direct Proof

. B

Not like other rules

