
CSE 311: Foundations of Computing

Lecture 7: Logical Inference



Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

"x P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

$x P(x) 
There is an x in the domain for which P(x) is true

read as “there exists x, P of x”



Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice “domain restriction” patterns

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

"x $y Greater(y, x)

For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”

¬ $x (Even(x) Ù Prime(x) Ù Greater(x, 2))

No even prime is greater than 2.



More English Ambiguity

Implicit quantifiers in English are often confusing

Three people that are all friends can form a raiding party

Three people that I know are all friends with Mark Zuckerberg

Formal logic removes this ambiguity
– quantifiers can always be specified
– unquantified variables that are not known constants (e.g, π)

are implicitly "–quantified

"

$



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition!  Which one seems right?



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

{plum, apple}
Domain of Discourse

(*)  PurpleFruit(plum) Ù PurpleFruit(apple)
(a) PurpleFruit(plum) Ú PurpleFruit(apple)
(b) ¬ PurpleFruit(plum) Ú¬ PurpleFruit(apple)
(c) ¬ PurpleFruit(plum) Ù¬ PurpleFruit(apple)



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)

These are equivalent but not equal

They have different English translations, e.g.:

There is no unicorn

Every animal is not a unicorn

¬ $x Unicorn(x)

"x ¬ Unicorn(x)



De Morgan’s Laws for Quantifiers

¬ $ x " y  ( x ≥ y)
º " x ¬ "y  ( x ≥ y)
º " x  $ y ¬ ( x ≥ y)
º " x  $ y  (y > x)

“There is no integer at least as large as every other integer”

“For every integer, there is a larger integer”

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ $x (Even(x) Ù Prime(x) Ù Greater(x, 2))
º "x ¬(Even(x) Ù Prime(x) Ù Greater(x, 2))
º "x (¬(Even(x) Ù Prime(x)) Ú ¬Greater(x, 2))
º "x ((Even(x) Ù Prime(x)) ®¬Greater(x, 2))
º "x ((Even(x) Ù Prime(x)) ® LessEq(x, 2))

“No even prime is greater than 2”

“Every even prime is less than or equal to 2.”

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ $x (P(x) Ù R(x)) º "x (P(x) ®¬ R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

¬"x (P(x) ® R(x)) º $x (P(x) Ù ¬ R(x))

We just saw that

Can similarly show that



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
¬ $x P(x) º "x ¬ P(x)

¬ $x (P(x) Ù R(x))  º "x (P(x) ®¬ R(x))
¬"x (P(x) ® R(x)) º $x (P(x) Ù ¬ R(x))

Remain true when domain restrictions are used:



Nested Quantifiers

• Quantified variable names don’t matter

"x $y P(x, y) º "a $b P(a, b)

• Positions of quantifiers can sometimes change
"x (Q(x) Ù $y P(x, y)) º "x $y (Q(x) Ù P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

x

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)))

{1, 2, 3, 4}
Domain of Discourse



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))

{1, 2, 3, 4}
Domain of Discourse

x



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

$x "y GreaterEq(x, y)))

"y $x GreaterEq(x, y)))

Important: both include the case x = y

Different names does not imply different objects!

{1, 2, 3, 4}
Domain of Discourse

x



Quantification with Two Variables

expression when true when false

"x " y P(x, y) Every pair is true. At least one pair is false.

$ x $ y P(x, y) At least one pair is true. All pairs are false.

" x $ y P(x, y) We can find a specific y for 
each x.
(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 
corresponding y.

$ y " x P(x, y) We can find ONE y that 
works no matter what x is.
(x1, y), (x2, y), (x3, y)

For any candidate y, there is 
an x that it doesn’t work for.

1   2   3   4
1
2
3
4

T F F F
T T F F
T T T F
T T T T



Logical Inference

• So far we’ve considered:
– How to understand and express things using 

propositional and predicate logic
– How to compute using Boolean (propositional) logic
– How to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– Equivalence is a small part of this



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p q A B
T T T

T F T

F T F

F F F



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A B
T T T T

T F T T

F T F

F F F

A ⇒ B



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

When we zoom out, what have we proven?

p q A B
T T T T

T F T T

F T F ?

F F F ?



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where B is true:

When we zoom out, what have we proven?

p q A B A ® B
T T T T T

T F T T T

F T F T T

F F F F T

(A ® B) º T



New Perspective

Equivalences
A º B and (A « B) º T are the same

Inference
A ⇒ B and (A ® B) º T are the same

Can do the inference by  zooming in 
to the rows where A is true



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution



Proofs

• Start with given facts (hypotheses)
• Use rules of inference to extend set of facts
• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If A and A ® B are both true, then B must be true

• Write this rule as

• Given: 
– If it is Wednesday, then you have a 311 class today. 
– It is Wednesday.

• Therefore, by Modus Ponens:  
– You have a 311 class today.

A ; A ® B
∴ B



My First Proof!

Show that r follows from p, p ® q, and q ® r

1.  𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒® 𝒓 Given
4.
5.

Modus Ponens



My First Proof!

Show that r follows from p, p ® q, and q ® r

1.  𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒® 𝒓 Given
4. 𝒒 MP: 1, 2
5. 𝒓 MP: 3, 4

Modus Ponens



1. 𝒑 → 𝒒 Given
2. ¬𝒒 Given
3. ¬𝒒®¬𝒑 Contrapositive: 1
4. ¬𝒑 MP: 2, 3

Proofs can use equivalences too

Show that ¬p follows from p ® q and ¬q

Modus Ponens



Inference Rules

A  ;  B 
∴ C  ,  D

A  ;  A ® B   
∴ B   

Requirements:
Conclusions:

If A is true and B is true ….

Then, C must 
be true

Then D must 
be true

Example (Modus Ponens):

If I have A and A ® B both true,
Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴ A Ú¬A 

Requirements:
Conclusions:

If I have nothing…

Example (Excluded Middle):

A Ú¬A must be true.

Then D must 
be true

Then, C must 
be true



Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

A Ù B
∴ A, B

A ; B   
∴ A Ù B 

A              x
∴ A Ú B, B Ú A

A ; A ® B
∴ B

A Þ B  
∴ A ® B

Not like other rules

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof


