CSE 311: Foundations of Computing

Lecture 7: Logical Inference
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“Eraser fight!!”



Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I )

P(x) is true for every x in the domain QUANTIFIEE
read as “for all x, P of x”

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”



Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice “domain restriction” patterns
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”
— dx (Even(x) A Prime(x) A Greater(x, 2))

No even prime is greater than 2.



More English Ambiguity

Implicit quantifiers in English are often confusing

Three people that are all friends can form a raiding party v

Three people that | know are all friends with Mark Zuckerberg 3

Formal logic removes this ambiguity
— quantifiers can always be specified

— unquantified variables that are not known constants (e.g, i)
are implicitly V-quantified



Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one seems right?



Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit” |

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Domain of Discourse
{plum, apple}

(*) PurpleFruit(plum) A PurpleFruit(apple)

(a) PurpleFruit(plum) v PurpleFruit(apple)
(b) — PurpleFruit(plum) v — PurpleFruit(apple)
(c) — PurpleFruit(plum) A — PurpleFruit(apple)



De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)




De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

These are equivalent but not equal
They have different English translations, e.g.:
There is no unicorn — dx Unicorn(x)

Every animal is not a unicorn  V/x — Unicorn(x)



De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“There is no integer at least as large as every other integer”

—dxVy (x2y)
= Vx—Vy (x2y)
Vx dy=(x2y)
Vx 3dy (y>x)

“For every integer, there is a larger integer”



De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“No even prime is greater than 2”

— 3Ix (Even(x) A Prime(x) A Greater(x, 2))

= Vx —(Even(x) A Prime(x) A Greater(x, 2))

= Vx (—(Even(x) A Prime(x)) v —Greater(x, 2))
= Vx ((Even(x) A Prime(x)) —> —Greater(x, 2))
= VX ((Even(x) A Prime(x)) — LessEq(x, 2))

“Every even prime is less than or equal to 2.”



De Morgan’s Laws for Quantifiers

We just saw that

— 3Ix (P(x) A R(x)) = Vx (P(x) > — R(x))

Can similarly show that

—VX (P(x) = R(x)) = Ix (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)



De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

Remain true when domain restrictions are used:

— I (P(x) A R(x)) =Vx(P(x) > — R(x))
— VX (P(x) = R(x)) = Ix (P(x) A = R(x))




Nested Quantifiers

 Quantified variable names don’t matter
Vx Ay P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))

 But: orderis important...



Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

GreaterEq(x, y) ::= “x2y”

1 2 3 4
Al T|F | F|F
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Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

“There is a number greater than or equal to all numbers.”

dx Vy GreaterEq(x, v)))

“Every number has a number greater than or equal to it.”

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

Yy
2 3 4
TIF|F|F
2T’T E | F
X3T|3§!F
4l T T
| —

Yy dx GreaterEq(x, y)))



Quantifier Order Can Matter

Domain of Discourse
{1I 2) 3) 4}

Predicate Definitions

GreaterEq(x, y) ::= “x2y”

2 3 4
u . ” T{F | F|F
There is a number greater than or equal to all numbers. 5
T T|F|F
X Va N
dx Yy GreaterEq(x, y))) glrll1]T
AV
“Every number has a number greater than or equal to it.” [_4 TV T

Yy dx GreaterEq(x, y)))

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

(

.

Important: both include the case x =y

Different names does not imply different objects!
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Quantification with Two Variables
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expression

when true

when false

Vx YV yP(x,y)

Every pair is true.

At least one pair is false.

dx3yP(x, )

At least one pair is true.

All pairs are false.

vV x3yP(x,vy)

We can find a specific y for
each x.

(Xll yl)i (Xz, y2)l (X3r y3)

Some x doesn’t have a
corresponding y.

dy V xP(x, y)

We can find ONE y that
works no matter what x is.

(Xll y)/ (XZI y)l (X3, y)

For any candidate y, there is
an x that it doesn’t work for.




Logical Inference

e So far we've considered:

— How to understand and express things using
propositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is a small part of this



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

>
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New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

>

T T
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Given that A is true, we see that B is also true.

A=B



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:
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When we zoom out, what have we proven?



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where B is true:
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When we zoom out, what have we proven?

(A—>B)=T



New Perspective

Equivalences
A =B and (A < B) =T are the same

Inference
A = B and (A — B) =T are the same

Can do the inference by [zooming in]
to the rows where A is true




Applications of Logical Inference

Software Engineering

— EXpress desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

Artificial Intelligence

— Automated reasoning

Algorithm designh and analysis

— e.g., Correctness, Loop invariants.

Logic Programming, e.g. Prolog

— EXpress desired outcome as set of constraints

— Automatically apply logic inference to derive solution



Proofs

« Start with given facts (hypotheses)
e Use rules of inference to extend set of facts
* Result is proved when it is included in the set



An inference rule: Modus Ponens

If Aand A — B are both true, then B must be true

Write thisruleas A:A—B
. B

e Given:
— If it is Wednesday, then you have a 311 class today.
— It is Wednesday.

Therefore, by Modus Ponens:
— You have a 311 class today.



My First Proof!

Show that r follows fromp,p > q,and q —> r

p Given
p —>q Given
q—r Given

A .

Modus Ponens

A:A—>B
s B




My First Proof!

Show that r follows fromp,p > q,and q —> r

1. p Given
2. p —>q Given
3. q—>1r Given
4. q MP: 1, 2
5. r MP: 3, 4

Modus Ponens

A:A—>B
s B




Proofs can use equivalences too

Show that —p follows from p — g and —q

1. p-gq Given

2. —q Given

3. —q—>—p Contrapositive: 1|
4. —p MP: 2, 3

A:A—>B
s B

Modus Ponens




Inference Rules

If A is true and B is true ....

Requirements: A : B
~C, D

Conclusions:

Then, C must Then D must
be true be true

Example (Modus Ponens):

A;A—>B If | have A and A — B both true,
B Then B must be true.




Axioms: Special inference rules

If | have nothing...

Requirements:

Conclusions: .. C , D
Then, C must Then D must
be true be true

Example (Excluded Middle):

A v—A must be true.

s A Vv—A



Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

-— AAB A:B
Im Intro A
o A; B o A /\ B
Elim Vv A A B : _'A Intro V A
B ~AvB BVA
Modus Ponens A : A — B Direct Proof

. B

Not like other rules



