CSE 311: Foundations of Computing |
Homework 6 (due November 21st at 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Each solution should be clear
enough that it can explain (to someone who does not already understand the answer) why it works. However,
you may use results from lecture, the reference sheets, and previous homeworks without proof.

1. Barking Up the Strong Tree (20 points)

Consider the function g(m) defined for m € N recursively as follows:

g(0) == 0 case: m =0
g9(27) == g()+1 case: m > 0 and even
9(2j+1) == ¢g(2)) case: m > 0 and odd

The first line gives the definition of g(m) for m = 0, the second line gives the definition for even (non-zero) m,
and the third line gives the definition for odd m. Those three cases are mutually exclusive and exhaustive, so
they define g completely.

Use strong induction to prove that
Vn € N(g(n) <n)

Hint: Since g is defined separately for even and odd values, you may need to split your inductive step into
two cases (even and odd) as well.

2. Live Strong and Prosper (20 points)

Consider the function f(n,x), taking inputs n € N and = € R, defined recursively as follows:

f(0,2) == =z case: n =0
f(24,z) == f(j,x+1) case: n > 0 and even
f2i+1,2) == f(2j,z) case: n > 0 and odd

As in Problem 1, these three cases are mutually exclusive and exhaustive, so they define f completely.
Use strong induction on n (not x) to show that

Vn e N,Vz e R(f(n,z) > x)

For your induction argument, let P(n) be “Vo € R(f(n,z) > z)". Note that this P(n) has a quantifier in it,
so each proof of P(k) should be using Intro V, translated to English.



Recall the definition of lists of numbers from lecture:

Basis Step: nil € List
Recursive Step: for any a € Z, if L € List, then a :: L € List.

For example, the list [1,2, 3] would be created recursively from the empty list as 1 :: (2 :: (3 :: nil)). We will
consider “::" to associate to the right, so the simpler expression 1 :: 2 :: 3 :: nil means the same thing.

The next two problems use two recursively-defined functions. The first is concat, which concatenates two
lists into a single list. It is defined recursively as follows:

concat(nil,R) == R VR € List
concat(a :: L,R) == a: concat(L,R) Va € Z,VL,R € List

For example, we get concat([1, 2], [3]) = concat(1 :: 2 :: nil,3 :: nil) =1 :: 2 :: 3 :: nil from these definitions.
The second function is sum, which adds up the numbers in a list. It is defined as:

sum(nil) == 0
sum(a:: L) == a-+sum(L) Va€Z,VL € List

For example, from these definitions, we get sum([1,2,3]) = 6.



3. List Me By a Mile (20 points)

(a) [2 Points| Write a chain of equalities, citing the appropriate definitions, showing that
concat(l::2::nil,3::nil)=1:2:3:nil
(b) [2 Points] Write a chain of equalities, citing the appropriate definitions, showing that
sum(l::2::3::nil) =6
(c) [16 Points] Let R € List. Use structural induction to prove the following

VL € List (sum(concat(L, R)) = sum(L) + sum(R))

4. List Me, List Me, Now You Gotta Kiss Me (18 points)

Let R, S € List. Use structural induction on L to prove that
VL € List (concat(concat(L, R), S) = concat(L, concat(R, S))

If we write concat as “+", then this says (L + R) + S = L+ (R+S). In other words, concat is associative.

5. A Few of My Favorite Strings (12 points)

For each of the following, write a recursive definition of the set of strings satisfying the given properties.
Briefly justify that your solution is correct.

(a) [4 Points] Binary strings where every 0 is immediately followed by a 1.
(b) [4 Points] Binary strings that start with 0 and have even length.

(c) [4 Points] Binary strings with an even number of Os.

6. Hope Strings Eternal [Online] (10 points)

For each of the following, construct regular expressions that match the given set of strings:
(a) [2 Points] Binary strings where every 0 is immediately followed by a 1.
(b) [2 Points] Binary strings that start with 0 and have even length.
(c) [2 Points] Binary strings with an even number of Os
(d) [2 Points| Binary strings with at least three Os.

(e) [2 Points] Binary strings with at least three Os or at most two 1s.

Submit and check your answers to this question here:
https://grin.cs.washington.edu/

Think carefully about your answer to make sure it is correct before submitting.
You have only 5 chances to submit a correct answer.



https://grin.cs.washington.edu/

7. Extra Credit: Stone By the Company He Keeps (0 points)
Consider an infinite sequence of positions 1,2,3,... and suppose we have a stone at position 1 and another
stone at position 2. In each step, we choose one of the stones and move it according to the following rule: Say
we decide to move the stone at position ¢; if the other stone is not at any of the positions i + 1,¢ + 2,..., 21,
then it goes to 2¢, otherwise it goes to 27 + 1.
For example, in the first step, if we move the stone at position 1, it will go to 3 and if we move the stone
at position 2 it will go to 4. Note: no matter how we move the stones, they will never be at the same position.
Use induction to prove that, for any given positive integer n, it is possible to move one of the stones to
position n. For example, if n = 7 first we move the stone at position 1 to 3. Then, we move the stone at
position 2 to 5 Finally, we move the stone at position 3 to 7.



