
CSE 311: Foundations of Computing I
Homework 3 (due Monday, October 24th at 11:00 PM)

Directions: Write up carefully argued solutions to the following problems. Each solution should be clear
enough that it can explain (to someone who does not already understand the answer) why it works. However,
you may use results from lecture, the reference sheets, and previous homeworks without proof.

1. Burden of Proof (20 points)
For each of the following, write a formal proof that the claim holds. Then, translate your proof to English.

You are free to use Cozy’s English translation of your proof as a starting point, but you should rephrase it
so that it sounds clear and natural to you. For this problem, your English proof will only be graded for effort,
but you will get feedback from the grader about whether your English proof sounds clear to them as well. In
future homeworks, we will grade your English proofs not just for effort, but also for clarity, so be sure to listen
carefully to the feedback you receive on your English proofs this week.

(a) [5 Points] Given P ∧Q, P → (R ∧ S), and (Q ∧R) → T , it follows that T holds.

(b) [5 Points] Given P → Q, ¬Q → P , and (Q ∨R) → S, it follows that S holds.
Hint: It may be useful to review Problem 6(b) from Homework 1.

(c) [5 Points] Given Q, Q ↔ T , and P → (R → S), it follows that T ∧ ((P ∧R) → S).
Hint: The “Direct Proof” rule will be useful here.

(d) [5 Points] Given P → (Q ∧R), S ∨ ¬Q, and (R ∧ S) → T , it follows that P → T .
Hint: The rule “Elim ∨” will be useful here.

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

You should submit your English proofs on Gradescope. Note that the
grader will only be looking at the English portion to give you (ungraded)
feedback. They will not see your formal proof, so the English proof must make
sense on its own.

1

http://cozy.cs.washington.edu


2. Proof Positive (14 points)
In this problem, we will look at some new inference rules, shown here:

Cases

A ∨B A → C B → C

∴ C

Simple Cases

A → C ¬A → C

∴ C

The first rule says that, if we know that either A is true or B is true and that A implies C and B implies C,
then it follows that C is true. The second rule is the just special case where B is the formula “¬A”.

To gain some familiarity with the first rule, use it to write a formal proof of the following:

(a) [4 Points] Given P ∧ (Q ∨R), Q → (P → S), and R → (P → S), it follows that Q ∨ S holds.
Your proof must use the Cases rule. It must not use Simple Cases or Elim ∨.

You can use Cozy to write and partially check your proof on this page. However, note that (1) you must
still submit your proof on Gradescope and (2) Cozy will not verify that you only used the allowed rules
(the grader will do that). If you choose to write your solution in LATEX, note that Cozy’s "Show LaTeX"
button will produce LATEX source that you can copy-and-paste into your solution.

In remainder of this problem, we will show that Cases, Simple Cases, and Elim ∨ rules are all equally powerful!
That is, any one of them allows you to prove the same things as the other two.

(b) [3 Points] Using Cases, give a formal proof that the Simple Cases rule is valid. Specifically, prove that,
given A → C and ¬A → C, it follows that C holds.

Your proof must use the Cases rule. It must not use Simple Cases or Elim ∨.
Hint: Your proof can be very short. Mine has only 4 lines.

You can use Cozy to write and partially check your proof on this page. Note, again, that (1) you must
still submit on Gradescope and (2) Cozy will not verify that you only used the allowed rules.

(c) [3 Points] Using Simple Cases, give a formal proof that the Elim ∨ rule is valid. Specifically, prove that,
given A ∨B and ¬A, it follows that B holds.

Your proof must use the Simple Cases rule. It must not use Cases or Elim ∨.
Hint: The Intro ∨ and Equivalent rules may be useful here.

You can use Cozy to write and partially check your proof on this page. Note, again, that (1) you must
still submit on Gradescope and (2) Cozy will not verify that you only used the allowed rules.

(d) [4 Points] Using Elim ∨, give a formal proof that the Cases rule is valid. Specifically, prove that, given
A ∨B, A → C, and B → C, it follows that C holds.

Your proof must use the Elim ∨ rule. It must not use Cases or Simple Cases.
Hint: The following equivalence will be useful: (A → C) ∧ (¬A → C) ≡ C. Note the similarity to

the Simple Cases rule! While you are not allowed to use the Simple Cases rule in your proof, you can
actually accomplish the same result with a simple equivalence.
You can use Cozy to write and partially check your proof on this page. Note, again, that (1) you must
still submit on Gradescope and (2) Cozy will not verify that you only used the allowed rules.
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3. Proof, Spoof, or Goof? (18 points)
For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of the
following categories describes the formal proof:

Proof The proof is correct.

Spoof The claim is true but the proof is wrong.

Goof The claim is false.

Finally, (3) if it is a spoof, point out the errors in the proof and explain how to correct them, and if it is a goof,
point out the first error in the proof and then show that the claim is false by giving a counterexample. (If it is
a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible, including
translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the claim is false, i.e., a
spoof is not a goof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as long as it
is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the proof is incorrect.
The proof is incorrect when it asserts a fact that is not necessarily true or does not follow by the reason given.

Hint: To give a counterexample to a claim in propositional logic, describe what truth values each atomic
variable should have so that all the givens are true but the result is false.

(a) [6 Points] Claim: Given ¬q ∨ s ∨ ¬r and p ∨ ¬s, it follows that (r ∧ q) → p holds.
Proof or Spoof : Assume r and q. The first given is equivalent to ¬(r∧ q)∨ s. Since we know that r and
q are true, this tells us that s must be true. The second given then tells us that p must be true.

(b) [6 Points] Claim: Given p → (¬q → r), s ∨ ¬q, q → ¬s, and ¬p → q, it follows that r holds.
Proof or Spoof : The second and third givens combined are equivalent to ¬q. The contrapositive of the
last given is p → ¬q, which combined with ¬q gives us p. From these two, the first given results in r.

(c) [6 Points] Claim: Given s → (p ∧ q), ¬s → r, and (r ∧ p) → q, it follows that q holds.
Proof or Spoof : First, note that s → q holds, since, assuming s, from given s → (p ∧ q) we can get p
and also q. Second, note that ¬s → q holds, since, assuming ¬s, from given ¬s → r we can get r, and
we already saw that p holds, so together we have r ∧ p, from which q follows by the last given. Finally,
either s or ¬s is true, and q follows either from our first claim or second claim above, respectively.
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4. Something to Prove (20 points)
For each of the following, write a formal proof that the claim holds. Then, translate your proof to English.

You are free to use Cozy’s English translation of your proof as a starting point, but you should rephrase it
so that it sounds clear and natural to you. For this problem, your English proof will only be graded for effort,
but you will get feedback from the grader about whether your English proof sounds clear to them as well.

Let P (x, y), Q(y), and R(z) be predicates defined in some fixed domain of discourse. Let c and d be some
well-known constants in that domain.

(a) [5 Points] Given ∀xP (x, c) and ∀y (Q(y) → P (c, y)), it follows that Q(d) → ∃z (P (d, z) ∧ P (z, d)).

(b) [5 Points] Given ∃x ∀y (Q(x) ∧ P (x, y)), it follows that ∀y ∃x (Q(x) ∧ P (x, y)).
Note: We showed in class that the converse of this statement does not hold!

(c) [5 Points] Given ∀x (Q(x) ∧ ∃y P (x, y)), it follows that ∀x ∃y (Q(x) ∧ P (x, y)).
Note: This fact was noted (but not proven) in lecture. You are asked to prove it here.

(d) [5 Points] Given ∀x (Q(x) → R(x)), it follows that (∀xQ(x)) → (∀xR(x)).
Note: You saw in Homework 2 Problem 5 that these two are different. Here, you are proving that

they are related: specifically, from the first of these, we can infer the second!

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

You should submit your English proofs on Gradescope. Note that the
grader will only be looking at the English portion to give you (ungraded)
feedback. They will not see your formal proof, so the English proof must make
sense on its own.
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5. Substitute Teacher (10 points)
In this problem, we will look at a few new inference rules for Predicate Logic, starting with the following:

Substitute

x = y P (x)

∴ P (y)

This rule says that, if we know that P (x) holds and we know that x = y, then it follows that P (y) holds. Note
that, here, “P (x)” can be any expression involving the variable x. For example, it could be “Q(x) ∨ P (x, c)”.
In that case, the rule says that, if we also know x = y, then it follows that Q(y) ∨ P (y, c) holds.

To gain some familiarity with this rule, use it to write a formal proof of the following:

(a) [5 Points] Given Q(c), R(c), ∀x (Q(x) → ∃y (x = f(y))), and ∀x (R(f(x)) → P (x, d)), it follows that
∃z P (z, d) holds.

Note: “f” is a function defined on all objects in this domain. (We used a lowercase letter to distinguish
the function f from predicates like P , Q, and R.)

Note: The Elim ∀ rule applies not only to individual variables but also to expressions like function calls.
For example, we can apply Elim ∀ to the predicate ∀x (Q(x) → R(x)) to get that Q(f(c)) → R(f(c)).
This is allowed since Elim ∀ allows us to replace “x” with any object in the domain and f(c) is an object!

Recall from lecture that we can define our own predicates. For example, we could define F (x) ::= ∃y (x = f(y)).
For any predicate definition, we get rules that allow us to replace the predicate with its definition or vice versa.
Here are the rules for this example predicate F :

Def of F

F(x)
∴ ∃y (x = f(y))

Undef F

∃y (x = f(y))
∴ F(x)

Note, again, that “x” can be replaced by any expression here. For example, we could apply “Def of F” to the
predicate F (f(d)) to get ∃z (f(d) = f(z)) or “Undef of F” to do the opposite.

To gain some familiarity with this new rule, use it to write a formal proof of the following:

(b) [5 Points] Given F (c), F (d), and ∀x ∀y (g(f(x), f(y)) = f(g(x, y))), it follows that F (g(c, d)) holds.
Note: “f” is the same function as in part (a). “g” is another function that takes two objects in the

domain as arguments and returns some object in the domain.
Hint: You may need the Substitute rule as well as Def of / Undef F on this part.

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

5

http://cozy.cs.washington.edu


6. Proof, Spoof, or Goof? Predicate logic edition (18 points)
For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of the
following categories describes the formal proof:

Proof The proof is correct.

Spoof The claim is true but the proof is wrong.

Goof The claim is false.

Finally, (3) if it is a spoof, point out the errors in the proof and explain how to correct them, and if it is a goof,
point out the first error in the proof and then show that the claim is false by giving a counterexample. (If it is
a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible, including
translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the claim is false, i.e., a
spoof is not a goof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as long as it
is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the proof is incorrect.
The proof is incorrect when it asserts a fact that is not necessarily true or does not follow by the reason given.

Hint: To give a counterexample to a claim in predicate logic, describe a domain of discourse and definitions
for all predicates such that all the givens are true but the result is false.

(a) [6 Points] Claim: Given ∀x (P (x) → ∃y R(x, y)) and ∀y (Q(y) → ∀xR(x, y)), it must follow that
∀x

(
(P (x) ∧Q(x)) → ∃z (R(x, z) ∧R(z, x))

)
.

Proof or Spoof : Let a be an arbitrary P that is also a Q. By the first given, since a is a P , there exists
b such that R(a, b). By the second given, since a is a Q, we also have R(b, a). Since a was arbitrary, the
claimed result follows.

(b) [6 Points] For this part, assume the domain of discourse is the integers.
Claim: Given ∀x ∃y R(x, y) and ∀x ∀y (R(x, y) → R(y, x)), it follows that ∃xR(x, x).
Proof or Spoof : By the first given plugging in 7 for x, we get that there exists b such that R(7, b). By
the second given, since R(7, b), we can plug in 7 for both x and y, and we get R(7, 7). The result follows.

(c) [6 Points] Claim: Given ∀x ∀y (R(x, y) → R(y, x)) and ∀x ∀y ∀z ((R(x, y) ∧ R(y, z)) → R(x, z)), it
follows that ∀x ∀y (R(x, y) → R(x, x)).
Proof or Spoof : Let a and b be arbitrary and assume R(a, b). By the first given, we have R(b, a). By
the second given, plugging in b for x, a for y, and b for z, we get R(b, b). Since a and b were arbitrary,
the result follows.

6



7. Extra Credit: A Step In the Right Direction (0 points)
In this problem, we will extend the machinery we used in HW1’s extra credit problem in two ways. First, we will
add some new instructions. Second, and more importantly, we will add type information to each instruction.

Rather than having a machine with single bit registers, we will imagine that each register can store more
complex values such as

Primitives These include values of types int, float, boolean, char, and String.

Pairs of values The type of a pair is denoted by writing “×” between the types of the two parts. For example,
the pair (1, true) has type “int × boolean” since the first part is an int and the second part is a boolean.

Functions The type of a function is denoted by writing a “→” between the input and output types. For
example, a function that takes an int as argument and returns a String is written “int → String”.

We add type information, describing what is stored in each each register, in an additional column next to the
instructions. For example, if R1 contains a value of type int and R2 contains a value of type int → (String× int),
i.e., a function that takes an int as input and returns a pair containing a String and an int, then we could write
the instruction

R3 := CALL(R1, R2) String × int

which calls the function stored in R2, passing in the value from R1 as input, and stores the result in R3, and
write a type of “String × int” in the right column since that is the type that is now stored in R3.

In addition to CALL, we add new instructions for working with pairs. If R1 stores a pair of type String× int,
then LEFT(R1) returns the String part and RIGHT(R1) returns the int part. If R2 contains a char and R3

contains a boolean, then PAIR(R2, R3) returns a pair of containing a char and a boolean, i.e., a value of type
char × boolean.

(a) Complete the following set of instructions so that they compute a value of type char in the last register
assigned (RN for some N):

R1 int × float
R2 int → (String × boolean)
R3 (float × String) → char
R4 := . . . . . .

The first three lines show the types already stored in registers R1, R2, and R3 at the start, before your
instructions are executed. You are free to use the values in those registers in later instructions.

Since we have unlimited space, store into a new register on each line. Do not reassign any registers.

(b) Compare the types listed next to these instructions to the propositions listed on the lines of your proof
in Problem 1(a). Give a collection of text substitutions, such as replacing all instances of “P” by “int”
(these can include substitutions for atomic propositions and for operators), that will make the sequence
of propositions in Problem 1(a) exactly match the sequence of types in Problem 8(a). (You may need to
change your solution to Problem 8(a) slightly to make this work!)

(c) Now, let’s add another way to form new types. If A and B are types, then A + B will be the type
representing values that can be of either type A or type B. For example, String + int would be a type of
values that can be strings or integers.

To work with this new type, we need some new instructions. First, if R1 has type A, then the
instruction CASE(R1) returns the same value but now having type A + B. (Note that we can pick any
type B that we want here.) Second, if R2 stores a value of type A + B, R3 stores a function of type
A → C (a function taking an A as input and returning a value of type C), and R4 stores a function of
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type B → C, then the instruction SWITCH(R2, R3, R4) returns a value of type C: it looks at the value in
R2, and, if it is of type A, it calls the function in R3 and returns the result, whereas, if it is of type B, it
calls the function in R4 and returns the result. In either case, the result is something of type C.

Complete the following set of instructions so that they compute a value of type float + boolean in
the last register assigned:

R1 int × (float + String)
R2 float → (int → boolean)
R3 String → (int → boolean)
R4 := . . . . . .

The first three lines again show the types of values already stored in registers R1, R2, and R3. As before,
do not reassign any registers. Use a new register for each instruction’s result.

(d) Compare the types listed next to these instructions to the propositions listed on the lines of your proof
in Problem 2(a). Give a collection of text substitutions, such as replacing all instances of “r” by “int”
(these can include substitutions for atomic propositions and for operators), that will make the sequence
of propositions in Problem 2(a) exactly match the sequence of types in Problem 8(c). (You may need to
change your solution to Problem 8(c) slightly to make this work!)

(e) Now that we see how to match up the propositions in our earlier proofs with types in the code above,
let’s look at the other two columns. Describe how to translate each of the rules of inference used in the
proofs from both Problem 1(a) and 2(a) so that they turn into the instructions in Problem 8(a) and 8(c).

(f) One of the important rules not used in Problems 1(a) or 2(a) was Direct Proof. What new concept would
we need to introduce to our assembly language so that the similarities noted above apply could also to
proofs that use Direct Proof?
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