
CSE 311: Foundations of Computing I

Practice Midterm Exam Solutions

Name: Sample Solutions

ID:

TA: Section:

INSTRUCTIONS:

• You have 50 minutes to complete the exam.

• The exam is closed book. You may not use cell phones or calculators.

• All answers you want graded should be written on the exam paper.

• If you need extra space, use the back of a page. Make sure to mention that you did though.

• The problems are of varying difficulty.

• If you get stuck on a problem, move on and come back to it later.

Problem Points Score Problem Points Score

1 20 5 5

2 15 6 10

3 10 7 20

4 20

Σ 100
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Basic Techniques.
This part will test your ability to apply techniques that have been explicitly identified in lecture
and reinforced through sections and homeworks. Remember to show your work and justify
your claims.

1. To Logic. . . or Not To Logic [20 points]

(a) (5 points) Choose a meaning of P (x, y, z) such that ∀x ∃y ∀z P (x, y, z) is false, but
∀x ∀y ∃z P (x, y, z) is true.

Solution: Let the domain be N. Let P (x, y, z) be “x ≥ 0 ∧ y ≥ z”.

Then, the first statment is false, because, while x ≥ 0 for everything in the domain, there is no largest
number in the domain. However, the second statement is true, because x ≥ 0 and z = y satisfies the
second part.

(b) (5 points) In the domain of integers, using any standard mathematical notation (but no new predi-
cates), define Prime(x) to mean “x is prime”.

Solution: Prime(x) ≡ x ≥ 2 ∧ ∀y ((1 ≤ y ≤ x ∧ y | x) → (y = x ∨ y = 1))

Let the predicates D(x, y) mean “team x defeated team y” and P (x, y) mean “team x has played team
y.” Give quantified formulas with the following meanings:

(c) (5 points) Every team has lost at least one game.

Solution: ∀x ∃y D(y, x)

(d) (5 points) There is a team that has beaten every team it has played.

Solution: ∃x ∀y (P (x, y) → D(x, y))
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2. Obvious Induction Problem [15 points]
Prove for all n ∈ N that the following identity is true:

n∑
i=0

xi =
1− xn+1

1− x

where x ∈ R, x 6= 1.

Solution: 1. Let P(n) be the statement “
n∑

i=0

xi =
1− xn+1

1− x
” for all n ∈ N.

We go by induction on n.

2. Base Case: When n = 0, P(0) is true, because since x 6= 1,

0∑
i=0

xi = x0 = 1 =
1− x1

1− x
.

3. Induction Hypothesis: Suppose P (k) is true for some k ∈ N.

4. Induction Step: We see that

k+1∑
i=0

xi =
k∑

i=0

xi + xk+1 [Taking out the last term]

=
1− xk+1

1− x
+ xk+1 [By the IH]

=
(1− xk+1) + (1− x)xk+1

1− x
[Algebra]

=
1− xk+2

1− x
[Simplifying]

which is what we wanted to show in the induction step.
5. Thus, we have proven P(n) for all n ∈ N by induction.
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3. 311 is Prime! [10 points]
Find all solutions in the range 0 ≤ x < 311 to the modular equation:

12x ≡ 5 (mod 311)

Solution: First, we compute the gcd of 311 and 12.

311 = 25 · 12 + 11

12 = 1 · 11 + 1

11 = 11 · 1 + 0

so gcd(311, 12) = 1 and hence we finish the Extended Euclidean Algorithm using:

11 = 311− 25 · 12
1 = 12− 11 · 1

Now, backwards substituting:

1 = 12− 1 · 11 = 12− 1 · (311− 25 · 12) = 26 · 12− 1 · 311

So, the multiplicative inverse of 12 modulo 311 is 26.
Now, we have the modular equation 12(26) ≡ 1 (mod 311). Multiplying both sides by 5, we get:

12(26 · 5) ≡ 5 (mod 311) → 12(130) ≡ 5 (mod 311)

So, x = 130.
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4. Even Circuits Are Fun [20 points]
The function multiple-of-three takes in two inputs: (x1x0)2 and outputs 1 iff 3 | (x1x0)2.

(a) (5 points) Draw a table of values (e.g. a truth table) for multiple-of-three.

Solution:

x1 x0 multiple-of-three

0 0 1

0 1 0

1 0 0

1 1 1

(b) (5 points) Write multiple-of-three as a sum-of-products.

Solution:
multiple-of-three = (x′

1x
′
0) + (x1x0)

(c) (5 points) Write multiple-of-three as a product-of-sums.

Solution:
multiple-of-three = (x1 + x′

0)(x
′
1 + x0)

(d) (5 points) Write multiple-of-three as a simplified expression (don’t bother explaining what rules you’re
using).

Solution:
multiple-of-three = (x1 + x0)

′ + (x1x0)

5. Irrationally Rational [5 points]
Recall the definition of irrational is that a number is not rational, and that

Rational(x) ≡ ∃p ∃q x =
p

q
∧ Integer(p) ∧ Integer(q) ∧ q 6= 0

For this question, you may assume that π is irrational. Disprove that if x and y are irrational, then x + y
is irrational.
Solution: Note that π is irrational, and multiplying by −1 maintains irrationality (because if it didn’t,
then we could find p, q by multiplying by −1, getting p, q, and choosing −p and q). Finally, note that
π + (−π) = 0, which is rational.

Page 5 of 10



6. Rationally Irrational [10 points]
Recall the definition of irrational is that a number is not rational, and that

Rational(x) ≡ ∃p ∃q x =
p

q
∧ Integer(p) ∧ Integer(q) ∧ q 6= 0

Prove that if x and y are rational and x 6= 7, then
y2

x− 7
is rational.

Solution: Short solution: Suppose x, y are rational and x 6= 7. Then by definition x = p/q for some
integers p and q with q 6= 0. Therefore x−7 = p/q−7 = p−7q

q
. Since x 6= 7, we have p−7q 6= 0. It follows

that 1
x−7

= q
p−7q

is rational since q and p− 7q are integers and p− 7q 6= 0. Now since y2

x−7
= y · y · 1

x−7

we see that y2

x−7
is the product of three rational numbers. In class, we showed that the product of rational

numbers is also rational. Since y and 1
x−7

are both rational, the product y · y · 1
x−7

= y2

x−7
is also rational

as required.
Longer solution not assuming what was done in class: Suppose x, y are rational and x 6= 7. Then by
definition x = p/q for some integers p and q with q 6= 0 and y = r/s for some integers r and s for s 6= 0.
Therefore x− 7 = p/q − 7 = p−7q

q
. Since x 6= 7, we have p− 7q 6= 0. Also y2 = (r/s)2 = r2

s2
. Therefore

y2

x− 7
=

r2

s2

p−7q
q

=
r2 · q

s2 · (p− 7q)
.

Since s 6= 0 and p− 7q 6= 0 we have s2 · (p− 7q) 6= 0. Also, since r and q are integers r2 · q is an integer
and since s, p, and q are integers s2 · (p − 7q) is an integer. Therefore y2

x−7
is quotient of integers r2 · q

and s2 · (p− 7q), the latter of which is 6= 0. Thus, it follows that y2

x−7
is rational.
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A Moment’s Thought!
This section tests your ability to think a little bit more insightfully. The approaches necessary
to solve these problems may not be immediately obvious. Remember to show your work and
justify your claims.

7. Gotta � m ∀ [20 points]
We say that k is a square modulo m iff there is some integer j such that k ≡ j2 (mod m).
Let T = {m : m = n2 + 1 for some integer n}.

(a) (8 points) Prove that if m ∈ T , then −1 is a square modulo m.

Solution: Let m be an arbitrary element of T .

Then, m = n2 + 1 for some integer n by definition of T .

Therefore, m | (n2 + 1). So, n2 ≡ −1 (mod m), which means −1 is a square modulo m.

(b) (12 points) Prove that for all integers m and k, if m ∈ T and k is a square modulo m then −k is
also a square modulo m.

Solution: Let m be an arbitrary element of T , and suppose that k is a square modulo m. Then,
k ≡ j2 (mod m) for some integer j.

Multiplying both sides of the congruence by −1, we get −k ≡ (−1)j2 (mod m).

From (a), we know that n2 ≡ −1 (mod m). Thus, we have −k ≡ n2j2 (mod m).

So, −k ≡ (nj)2 (mod m), which means −k is a square modulo m.
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CSE 311: Foundations of Computing I

Logical Equivalences Reference Sheet

Identity

p ∧ T ≡ p

p ∨ F ≡ p

Domination

p ∨ T ≡ T
p ∧ F ≡ F

Idempotency

p ∨ p ≡ p

p ∧ p ≡ p

Commutativity

p ∨ q ≡ q ∨ p

p ∧ q ≡ q ∧ p

Associativity

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Distributivity

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Absorption

p ∨ (p ∧ q) ≡ p

p ∧ (p ∨ q) ≡ p

Negation

p ∨ ¬p ≡ T
p ∧ ¬p ≡ F

DeMorgan’s Laws

¬(p ∨ q) ≡ ¬p ∧ ¬q
¬(p ∧ q) ≡ ¬p ∨ ¬q

Double Negation

¬¬p ≡ p

Law of Implication

p → q ≡ ¬p ∨ q

Contrapositive

p → q ≡ ¬q → ¬p



CSE 311: Foundations of Computing I

Boolean Algebra Axioms (and Some Theorems)

Axioms

Closure

a+ b is in B
a • b is in B

Commutativity

a+ b = b+ a

a • b = b • a

Associativity

a+ (b+ c) = (a+ b) + c

a • (b • c) = (a • b) • c

Identity

a+ 0 = a

a • 1 = a

Distributivity

a+ (b • c) = (a+ b) • (a+ c)

a • (b+ c) = (a • b) + (a • c)

Complementarity

a+ a0 = 1

a • a0 = 0

Theorems

Null

X + 1 = 1

X • 0 = 0

Idempotency

X +X = X

X •X = X

Involution

(X 0)0 = X

Uniting

X • Y +X • Y 0 = X

(X + Y ) • (X + Y 0) = X

Absorbtion

X +X • Y = X

(X + Y 0) • Y = X • Y
X • (X + Y ) = X

(X • Y 0) + Y = X + Y

DeMorgan

(X + Y + · · · )0 = X 0 • Y 0 • · · ·
(X • Y • · · · )0 = X 0 + Y 0 + · · ·

Consensus

(X • Y ) + (Y • Z) + (X 0 • Z) = X • Y +X 0 • Z
(X + Y ) • (Y + Z) • (X 0 + Z) = (X + Y ) • (X 0 + Z)

Factoring

(X + Y ) • (X 0 + Z) = X • Z +X 0 • Y
X • Y +X 0 • Z = (X + Z) • (X 0 + Y )



CSE 311: Foundations of Computing I

Axioms & Inference Rules

Excluded Middle

∴ A ∨ ¬A

Direct Proof

A ⇒ B

∴ A → B

Modus Ponens

A A → B

∴ B

Intro ∧

A B

∴ A ∧B

Elim ∧

A ∧B

∴ A B

Intro ∨

A

∴ A ∨B B ∨A

Elim ∨

A ∨B ¬A
∴ B

Intro ∃

P (c) for some c

∴ ∃x P (x)

Elim ∀

∀x P (x)

∴ P (a) for any a

Intro ∀

Let a be arbitrary . . . P (a)

∴ ∀x P (x) (If no other name in P depends on a)

Elim ∃

∃x P (x)

∴ P (c) for some special c list dependencies for c


