
Section 08: Induction, Regular Expressions

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring
“000”.

2. CFGs

(a) All binary strings that end in 00.

(b) All binary strings that contain at least three 1’s.

(c) All binary strings with an equal number of 1’s and 0’s.

3. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c,X) is a string.

Recall the following recursive definition of the function len:

len("") = 0

len(append(c,X)) = 1 + len(X)

Now, consider the following recursive definition:

double("") = ""

double(append(c,X)) = append(c, append(c,double(X))).

Prove that for any string X, len(double(X)) = 2len(X).

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(•, L,R) is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

leaves(•) = 1

leaves(Tree(•, L,R)) = leaves(L) + leaves(R)
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Also, recall the definition of size on trees:

size(•) = 1

size(Tree(•, L,R)) = 1 + size(L) + size(R)

Prove that leaves(T ) ≥ size(T )/2 + 1/2 for all Trees T .

(c) Prove the previous claim using strong induction. Define P (n) as “all trees T of size n satisfy leaves(T ) ≥
size(T )/2 + 1/2”. You may use the following facts:

• For any tree T we have size(T ) ≥ 1.

• For any tree T , size(T ) = 1 if and only if T = •.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k + 1.

4. Walk the Dawgs

Suppose a dog walker takes care of n ≥ 12 dogs. The dog walker is not a strong person, and will walk dogs in
groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the n dogs
into groups of 3 or 7.

5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then Tree(x, L,R) is a Tree.

The sum function returns the sum of all elements in a Tree.

sum(Nil) = 0

sum(Tree(x, L,R)) = x+ sum(L) + sum(R)

The following recursively defined function produces the mirror image of a Tree.

reverse(Nil) = Nil

reverse(Tree(x, L,R)) = Tree(x, reverse(R), reverse(L))

Show that, for all Trees T that
sum(T ) = sum(reverse(T ))
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