[Fast Exponentiation Algorithm

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and
an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer (n,e) (not p, q)

You want to send Amazon your credit card number a.

You compute € = a®%n and send Amazon C.

Amazon computes d, the multiplicative inverse of e (mod [p — 1][q — 1])

Amazon finds C%%n

Fact: a = C%%mn aslongas0<a<nandptaandqta

How big are those numbers?

123018600845301177551304949583849027207728535695953347921977322
452151726400507263657518745202199786469389956474942777400638459
25192557326303453731548268507917026012214291340167042921431160
22212404779274737794080005351419597459856902143413

3347807169895689878604416984821269081770479498371376856891243
13889828683793878002287614711652531743087737814467999489

X

3674604366679959042824463379962795263227915816434308704267603
2283815739600511279233373417143396810270092798736308917

How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It's a
nice combination of lots of things we've done with modular arithmetic.

Let's talk about finding € = a®%n.

e is a BIG number (about 21° is a common choice)
int total = 1;

for(int 1 = 0; 1 < e; i++){

total = (a * total) % n;

Let's build a faster algorithm.

Fast exponentiation — simple case. What if e is exactly 216?
int total = 1;

for(int i = 0; 1 < e; 1i++){
total = a * total % n;

}

Instead:

int total = a;

for(int 1 = 0; 1 < log(e); 1i++){

O

total = total”™?2 % n;

Fast exponentiation algorithm

What if e isn't exactly a power of 27?

Step 1. Write e in binary.

Step 2: Find a“%n for c every power of 2 up to e.

Step 3: calculate a® by multiplying a€ for all ¢ where binary expansion of
e had a 1.

Fast exponentiation algorithm

Find 4'19%10
Step 1: Write e in binary.
Step 2: Find a“%n for ¢ every power of 2 up to e.

Step 3: calculate a® by multiplying a® for all ¢ where binary expansion of
e had a 1.

Start with largest power of 2 less than e (8). 8's place gets a 1. Subtract power

Go to next lower power of 2, if remainder of e is larger, place gets a 1, subtract
power; else place gets a 0 (leave remainder alone).

Fast exponentiation algorithm

Find 411910
Step 1. Write e in binary.
Step 2: Find a®%n for ¢ every power of 2 up to e.

ﬁtedp 3: calculate a® by multiplying a® for all ¢ where binary expansion of e
ad a 1.

41%10 = 4
429%10 = 6
4*%10 = 6°%10 = 6
48910 = 62%10 = 6

Fast exponentiation algorithm

Find 4119410
Step 1. Write e in binary.
Step 2: Find a®%n for ¢ every power of 2 up to e.

ﬁteo 3: calculate a® by multiplying a¢ for all ¢ where binary expansion of e
ad a 1.

410410 = 4 4110410 = 48+2+10410 =
20 [(48%10) - (42%10) - (4%10)]%10 = (6 - 6 - 4)%10
4"%10 =6 = (36%10 - 4)%10 = (6 - 4)%10 = 24%10 = 4

440410 = 6%2%10 = 6
480410 = 629%10 = 6

Fast Exponentiation Algorithm

s it...actually fast?

The number of multiplications is between log, e and 2 log,, e.

That's A LOT smaller than e

One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

Find 25 in binary:
16 is the largest power of 2 smaller than 25. (25 — 16) = 9 remaining
8 is smaller than 9. (9 — 8) = 1 remaining.
4s place gets a 0.
2s place gets a 0
1s place gets a 1
11001,

One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

Find 32'9%7 :

3167 =3

32047 = 9%7 = 2

34067 = (32-32)%7 = (2-2)%7 = 4
38067 = (3* - 3M)%7 = (4 - 4)%7 =2
316047 = (38 -3%)%7 = (2-2)%7 = 4

One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

31%7 — 3 325%7 — 316+8+1%7
20 _ = [(3%%7) - (3%3%7) - (B1%7)]%7
3°N7 =2 =[4-2-3]%7
34%7:4 =(1-3)%7:3
38047 = 2

31697 = 4

A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

Raising numbers to large exponents (in mod arithmetic) and finding
multiplicative inverses in modular arithmetic are things computers can

do quickly.
But factoring numbers (to find p, g to get d) or finding an “exponential

inverse” (not a real term) directly are not things computers can do
quickly. At least as far as we know.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and
an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer (n,e) (not p, q)

You want to send Amazon your credit card number a.

You compute € = a®%n and send Amazon C.

Amazon computes d, the multiplicative inverse of e (mod [p — 1][q — 1])

Amazon finds C%%n

Fact: a = C%%mn aslongas0<a<nandptaandqta

