
Fast Exponentiation Algorithm



An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and 
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎



How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322

4521517264005072636575187452021997864693899564749427740638459

2519255732630345373154826850791702612214291346167042921431160

2221240479274737794080665351419597459856902143413

3347807169895689878604416984821269081770479498371376856891243

1388982883793878002287614711652531743087737814467999489

3674604366679959042824463379962795263227915816434308764267603

2283815739666511279233373417143396810270092798736308917



How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It’s a 
nice combination of lots of things we’ve done with modular arithmetic. 

Let’s talk about finding 𝐶 = 𝑎𝑒%𝑛. 

𝑒 is a BIG number (about 216 is a common choice)

int total = 1;

for(int i = 0; i < e; i++){

total = (a * total) % n;

}



Let’s build a faster algorithm.

Fast exponentiation – simple case. What if 𝑒 is exactly 216?

int total = 1;

for(int i = 0; i < e; i++){

total = a * total % n;

}

Instead:

int total = a;

for(int i = 0; i < log(e); i++){

total = total^2 % n;

}



Fast exponentiation algorithm

What if 𝑒 isn’t exactly a power of 2?

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 
𝑒 had a 1.



Fast exponentiation algorithm

Find 411%10

Step 1: Write 𝒆 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 
𝑒 had a 1.

Start with largest power of 2 less than 𝑒 (8). 8’s place gets a 1. Subtract power

Go to next lower power of 2, if remainder of 𝑒 is larger, place gets a 1, subtract 
power; else place gets a 0 (leave remainder alone). 

11 = 10112



Fast exponentiation algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝒂𝒄%𝒏 for 𝒄 every power of 𝟐 up to 𝒆.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 𝑒
had a 1.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6



Fast exponentiation algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝒂𝒆 by multiplying 𝒂𝒄 for all 𝒄 where binary expansion of 𝒆
had a 𝟏.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

411%10 = 48+2+1%10 =
[(48%10) ⋅ 42%10 ⋅ 4%10 ]%10 = (6 ⋅ 6 ⋅ 4)%10
= 36%10 ⋅ 4 %10 = 6 ⋅ 4 %10 = 24%10 = 4.



Fast Exponentiation Algorithm

Is it…actually fast?

The number of multiplications is between log2 𝑒 and 2 log2 𝑒.

That’s A LOT smaller than 𝑒



One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 25 in binary:

16 is the largest power of 2 smaller than 25. 25 − 16 = 9 remaining

8 is smaller than 9. 9 − 8 = 1 remaining.

4s place gets a 0.

2s place gets a 0

1𝑠 place gets a 1

110012



One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 32
𝑖
%7:

31%7 = 3

32%7 = 9%7 = 2

34%7 = (32 ⋅ 32)%7 = (2 ⋅ 2)%7 = 4

38%7 = 34 ⋅ 34 %7 = 4 ⋅ 4 %7 = 2

316%7 = 38 ⋅ 38 %7 = 2 ⋅ 2 %7 = 4



One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

31%7 = 3

32%7 = 2

34%7 = 4

38%7 = 2

316%7 = 4

325%7 = 316+8+1%7
= [(316%7) ⋅ 38%7 ⋅ (31%7)]%7
= 4 ⋅ 2 ⋅ 3 %7
= 1 ⋅ 3 %7 = 3



A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

Raising numbers to large exponents (in mod arithmetic) and finding 
multiplicative inverses in modular arithmetic are things computers can 
do quickly.

But factoring numbers (to find 𝑝, 𝑞 to get 𝑑) or finding an “exponential 
inverse” (not a real term) directly are not things computers can do 
quickly. At least as far as we know. 



An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and 
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎


