
Structural Induction CSE 311 Winter 21
Lecture 17



Announcements
More midterm logistics details on page.
Practice materials also up.
Exam will have “fewer, longer” questions.
Would be comfortable giving as a time-constrained 2 hour exam.
I’m estimating most folks will need about 3 hours to account for typing 
time/collaboration time.
But you’re allowed as much time as you want, provided it’s in by the due date.
NO late days on the exam; if you run into issues, send Jamie an email.
Once the exam is out, we will only answer clarifying questions on questions == not 
any on course content (like you were in an exam room). 



Recursive Definition of Sets
Define a set 𝑆 as follows:
Basis Step: 0 ∈ 𝑆
Recursive Step: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.
Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a 
finite number of recursive steps starting from a basis step.

What is 𝑆?



Recursive Definitions of Sets
We’ll always list the Basis and Recursive parts of the definition.
Starting…now…we’re going to be lazy and skip writing the “exclusion” 
rule. It’s still part of the definition.



Recursive Definitions of Sets
Basis: 6 ∈ 𝑆, 15 ∈ 𝑆
Recursive: If 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

Basis: 
1
1
0

∈ 𝑆
1
0
1

∈ 𝑆

Recursive: if 𝑥 ∈ 𝑆, then 𝛼𝑥 ∈ 𝑆 for all 𝛼 ∈ ℝ.
If 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Write a recursive definition of {𝑥: 𝑥 = 3!  for some 𝑖 ∈ ℕ}.



Strings
Why these recursive definitions? 
They’re the basis for regular expressions, which we’ll introduce next 
week. Answer questions like “how do you search for anything that looks 
like an email address”

First, we need to talk about strings.
 Σ will be an alphabet the set of all the letters you can use in words.
 Σ∗ is the set of all words all the strings you can build off of the letters.



Strings
 𝜀 is “the empty string”
The string with 0 characters – “” in Java (not null!)

 Σ∗:
Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗

 𝑤𝑎 means the string of 𝑤 with the character 𝑎 appended.
You’ll also see 𝑤 ⋅ 𝑎 (a ⋅ to mean “concatenate” i.e. + in Java) 



Functions on Strings
Since strings are defined recursively, most functions on strings are as well.
Length:
len(𝜀)=0; 
len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ
Reversal:

 𝜀" = 𝜀; 
𝑤𝑎 " = 𝑎𝑤" for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation
 𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗; 
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ
Number of 𝑐’s in a string

 ## 𝜀 = 0
## 𝑤𝑐 = ## 𝑤 + 1 for 𝑤 ∈ Σ∗; 
## 𝑤𝑎 = ##(𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.



Functions on Strings
Since strings are defined recursively, most functions on strings are as well.
Length:
len(𝜀)=0; 
len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ
Reversal:

 𝜀" = 𝜀; 
𝑤𝑎 " = 𝑎𝑤" for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation
 𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗; 
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ
Number of 𝑐’s in a string

 ## 𝜀 = 0
## 𝑤𝑐 = ## 𝑤 + 1 for 𝑤 ∈ Σ∗; 
## 𝑤𝑎 = ##(𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.



Structural Induction
Every element is built up recursively…
So to show 𝑃(𝑠) for all 𝑠 ∈ 𝑆…
Show 𝑃(𝑏) for all base case elements 𝑏.
Show if 𝑃() holds for every named element in the recursive rule, then 
𝑃() holds for the new element (repeat for each rule).



Structural Induction Example
Let 𝑆 be:
Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Show that every element of 𝑆 is divisible by 3.



Structural Induction
Let 𝑃(𝑥) be 𝑥 is divisible by 3
We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.
Base Cases:
Inductive Hypothesis:
Inductive Step:

We conclude 𝑃 𝑥 ∀𝑥 ∈ S by the principle of induction.
Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.



Structural Induction
Let 𝑃(𝑥) be 𝑥 is divisible by 3
We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.
Base Cases:
6 = 2 ⋅ 3 so 3|6, and 𝑃(6) holds. 15 = 5 ⋅ 3, so3|15 and 𝑃(15) holds.
Inductive Hypothesis: Suppose 𝑃(𝑥) and 𝑃(𝑦) for arbitrary 𝑥, 𝑦.
Inductive Step: 

We conclude 𝑃 𝑥 ∀𝑥 ∈ S by the principle of induction.
Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.



Structural Induction
Let 𝑃(𝑥) be 𝑥 is divisible by 3
We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.
Base Cases:
6 = 2 ⋅ 3 so 3|6, and 𝑃(6) holds. 15 = 5 ⋅ 3, so3|15 and 𝑃(15) holds.
Inductive Hypothesis: Suppose 𝑃(𝑥) and 𝑃(𝑦) for arbitrary 𝑥, 𝑦.
Inductive Step: By IH 3 x and 3 y.   So  𝑥 = 3𝑛 and 𝑦 = 3𝑚 for integers 
𝑚, 𝑛.
Adding the equations, 𝑥 + 𝑦 = 3(𝑛 + 𝑚). Since 𝑛, 𝑚 are integers, we 
have 3|(𝑥 + 𝑦) by definition of divides. This gives 𝑃(𝑥 + 𝑦).
We conclude 𝑃 𝑥 ∀𝑥 ∈ S by the principle of induction.

Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.



Structural Induction Template
1. Define 𝑃() Show that 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆. State your proof is by 
structural induction.
2. Base Case: Show 𝑃(𝑥) for all base cases 𝑥 in 𝑆.
3. Inductive Hypothesis: Suppose 𝑃(𝑥) for all 𝑥 listed as in 𝑆 in the 
recursive rules.
4. Inductive Step: Show 𝑃() holds for the “new element” given. 
You will need a separate step for every rule.
5. Therefore 𝑃 𝑥 holds for all 𝑥 ∈ 𝑆 by the principle of induction.



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.

Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

Notice the strangeness of this 𝑃() there is a “for all 𝑥“ inside the 
definition of 𝑃(𝑦).

That means we’ll have to introduce an arbitrary 𝑥 as part of the 
inductive step!



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.

Define Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “
We prove 𝑃(𝑦) for all 𝑦 ∈ Σ∗ by structural induction.
Base Case:
Inductive Hypothesis:
Inductive Step:

Σ∗:Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.

Define Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “
We prove 𝑃(𝑦) for all 𝑦 ∈ Σ∗ by structural induction.
Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)
Inductive Hypothesis: Suppose 𝑃(𝑤)
Inductive Step: Let 𝑥 be an arbitrary string. 

Therefore, len(xwa)=len(x) + len(wa)Σ∗:Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗



Claim len(x⋅y)=len(x) + len(y) for all 𝑥, 𝑦 ∈ Σ∗.
Define Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “
We prove 𝑃(𝑦) for all 𝑦 ∈ Σ∗ by structural induction.
Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)
Inductive Hypothesis: Suppose 𝑃(𝑤)
Inductive Step: Let 𝑥 be an arbitrary string. 
len(xwa) =len(xw)+1 (by definition of len)

=len(x) + len(w) + 1 (by IH)
=len(x) + len(wa) (by definition of len)

Therefore, len(xwa)=len(x) + len(wa) Σ∗:Basis: 𝜀 ∈ Σ∗.
Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗



More Structural Sets
Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.
Recursive Step: If 𝑇# and 𝑇$ are rooted binary trees with roots 𝑟# and 𝑟$, 
then a tree rooted at a new node, with children 𝑟#, 𝑟$ is a binary tree.

𝑇, 𝑇-



Functions on Binary Trees
size(    )=1
size(              ) = size(𝑇#) + size(𝑇$) + 1

height(   ) = 0
height(             ) = 1+max (height(𝑇#),height(𝑇$))

𝑇, 𝑇-

𝑇, 𝑇-



Structural Induction on Binary Trees
For every rooted binary tree 𝑇, size(𝑇) ≤ 2%&!'%( ) *# − 1

We’ll show this next time.


