GCD and the Euclidian Algorithm

xkcd.com/247
Try using the contrapositive yourselves!

Show for any sets A, B, C: if $A \not\subseteq (B \cup C)$ then $A \not\subseteq C$.

1. What do the terms in the statement mean?
2. What does the statement as a whole say?
3. Where do you start?
4. What’s your target?
5. Finish the proof 😊

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/cse311 and login with your UW identity
Or text cse311 to 37607
Try it yourselves!

Show for any sets A, B, C: if $A \nsubseteq (B \cup C)$ then $A \nsubseteq C$.

Proof:
We argue by contrapositive,
Let A, B, C be arbitrary sets, and suppose $A \subseteq C$.
Let x be an arbitrary element of A. By definition of subset, $x \in C$. By definition of union, we also have $x \in B \cup C$. Since x was an arbitrary element of A, we have $A \subseteq (B \cup C)$.
Since A, B, C were arbitrary, we have: if $A \nsubseteq (B \cup C)$ then $A \nsubseteq C$.
Divisors and Primes
Inverses

Given a function \(f: \mathbb{N} \to \mathbb{N} \), if \(x \neq y \) implies \(f(x) \neq f(y) \) then define the inverse of \(f \), called \(f^{-1} \), to be \(f^{-1}(y) = x \) for \(f(x) = y \).

Why is there one unique such \(f^{-1} \)?

What is \(f^{-1}(f(x)) \)?
What is \(f(f^{-1}(x)) \)?
Inverses of operations

Inverse (modular arithmetic)

Fix two integers \(i, n \geq 0 \).

- We call \(j \) an *additive inverse of \(i \mod n \)* if \((i + j) \equiv 0 \pmod{n}\).
- We call \(j \) a *multiplicative inverse of \(i \mod n \)* if \((i \cdot j) \equiv 1 \pmod{n}\).
Primes and FTA

<table>
<thead>
<tr>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>An integer $p > 1$ is prime iff its only positive divisors are 1 and p. Otherwise it is “composite”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fundamental Theorem of Arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every positive integer greater than 1 has a unique prime factorization.</td>
</tr>
<tr>
<td>GCD and LCM</td>
</tr>
<tr>
<td>-------------</td>
</tr>
</tbody>
</table>
| **Greatest Common Divisor**
| The Greatest Common Divisor of a and b (gcd(a,b)) is the largest integer c such that $c \mid a$ and $c \mid b$ |
| **Least Common Multiple**
| The Least Common Multiple of a and b (lcm(a,b)) is the smallest positive integer c such that $a \mid c$ and $b \mid c$. |
Try a few values...

gcd(100,125)
gcd(17,49)
gcd(17,34)
gcd(13,0)

lcm(7,11)
lcm(6,10)
public int Mystery(int m, int n)
{
 if(m<n){
 int temp = m;
 m=n;
 n=temp;
 }
 while(n != 0) {
 int rem = m % n;
 m=n;
 n=rem;
 }
 return m;
}

How do you calculate a gcd?

You could:
Find the prime factorization of each
Take all the common ones. E.g.
gcd(24,20)=gcd(2^3 \cdot 3, 2^2 \cdot 5) = 2^{\min(2,3)} = 2^2 = 4.
(\text{lcm has a similar algorithm – take the maximum number of copies of everything})

But that’s....really expensive. Mystery from a few slides ago finds gcd.
Two useful facts

gcd Fact 1
If \(a, b\) are positive integers, then \(\text{gcd}(a, b) = \text{gcd}(b, a \% b)\)

Tomorrow’s lecture we’ll prove this fact. For now: just trust it.

gcd Fact 2
Let \(a\) be a positive integer: \(\text{gcd}(a, 0) = a\)

Does \(a|a\) and \(a|0\)? Yes \(a \cdot 1 = a; a \cdot 0 = a\).
Does anything greater than \(a\) divide \(a\)?
public int Mystery(int m, int n) {
 if (m < n) {
 int temp = m;
 m = n;
 n = temp;
 }
 while (n != 0) {
 int rem = m % n;
 m = n;
 n = rem;
 }
 return m;
}
Euclid’s Algorithm

gcd(660,126)
Euclid’s Algorithm

while(n != 0) {
 int rem = m % n;
 m=n;
 n=rem;
}

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

Tableau form

<table>
<thead>
<tr>
<th>Starting Numbers</th>
<th>Final answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>660 = 5 \cdot 126 + 30</td>
<td>6</td>
</tr>
<tr>
<td>126 = 4 \cdot 30 + 6</td>
<td></td>
</tr>
<tr>
<td>30 = 5 \cdot 6 + 0</td>
<td></td>
</tr>
</tbody>
</table>
We’re not going to prove this theorem...
But we’ll show you how to find s,t for any positive integers a,b.

<table>
<thead>
<tr>
<th>Bézout’s Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a and b are positive integers, then there exist integers s and t such that $\text{gcd}(a,b) = sa + tb$</td>
</tr>
</tbody>
</table>
Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27)
Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

\[
gcd(35,27) = gcd(27, 35\%27) = gcd(27,8) = gcd(8, 27\%8) = gcd(8, 3) = gcd(3, 8\%3) = gcd(3, 2) = gcd(2, 3\%2) = gcd(2,1) = gcd(1, 2\%1) = gcd(1,0)
\]

\[
35 = 1 \cdot 27 + 8 \\
27 = 3 \cdot 8 + 3 \\
8 = 2 \cdot 3 + 2 \\
3 = 1 \cdot 2 + 1
\]
Extended Euclidian Algorithm

Step 1 compute $\text{gcd}(a,b)$; keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

\[
\begin{align*}
35 &= 1 \cdot 27 + 8 \\
27 &= 3 \cdot 8 + 3 \\
8 &= 2 \cdot 3 + 2 \\
3 &= 1 \cdot 2 + 1
\end{align*}
\]
Extended Euclidian Algorithm

Step 1 compute \(\text{gcd}(a,b) \); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

\[
\begin{align*}
35 & = 1 \cdot 27 + 8 \\
27 & = 3 \cdot 8 + 3 \\
8 & = 2 \cdot 3 + 2 \\
3 & = 1 \cdot 2 + 1 \\
8 & = 35 - 1 \cdot 27 \\
3 & = 27 - 3 \cdot 8 \\
2 & = 8 - 2 \cdot 3 \\
1 & = 3 - 1 \cdot 2
\end{align*}
\]
Extended Euclidian Algorithm

Step 1 compute $\gcd(a,b)$; keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2
\end{align*}
\]
Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2
\end{align*}
\]

\[
\begin{align*}
1 &= 3 - 1 \cdot 2 \\
&= 3 - 1 \cdot (8 - 2 \cdot 3) \\
&= -1 \cdot 8 + 2 \cdot 3
\end{align*}
\]
Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2
\end{align*}
\]

\[
gcd(27,35) = 13 \cdot 27 + (-10) \cdot 35
\]
So...what’s it good for?

Suppose I want to solve $7x \equiv 1 \pmod{n}$

Just multiply both sides by $\frac{1}{7}$...

Oh wait. We want a number to multiply by 7 to get 1.

If the $\gcd(7,n) = 1$

Then $s \cdot 7 + tn = 1$, so $7s - 1 = -tn$ i.e. $n|(7s - 1)$ so $7s \equiv 1 \pmod{n}$.

So the s from Bézout’s Theorem is what we should multiply by!
Try it

Solve the equation $7y \equiv 3 (mod\ 26)$

What do we need to find?
The multiplicative inverse of $7(mod\ 26)$
Multiplicative Inverse

The number b is a multiplicative inverse of a (mod n) if $ba \equiv 1$ (mod n).

If $\gcd(a, n) = 1$ then the multiplicative inverse exists.
If $\gcd(a, n) \neq 1$ then the inverse does not exist.

Arithmetic (mod p) for p prime is really nice for that reason.

Sometimes equivalences still have solutions when you don’t have inverses (but sometimes they don’t)
Finding the inverse...

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)
 = gcd(5, 7%5) = gcd(5,2)
 = gcd(2, 5%2) = gcd(2, 1)
 = gcd(1, 2%1) = gcd(1,0) = 1.

26 = 3 \cdot 7 + 5 ; 5 = 26 - 3 \cdot 7
7 = 5 \cdot 1 + 2 ; 2 = 7 - 5 \cdot 1
5 = 2 \cdot 2 + 1 ; 1 = 5 - 2 \cdot 2

\begin{align*}
1 &= 5 - 2 \cdot 2 \\
 &= 5 - 2(7 - 5 \cdot 1) \\
 &= 3 \cdot 5 - 2 \cdot 7 \\
 &= 3 \cdot (26 - 3 \cdot 7) - 2 \cdot 7 \\
 &= 3 \cdot 26 - 11 \cdot 7
\end{align*}

\(-11\) is a multiplicative inverse.
We'll write it as 15, since we're working mod 26.
Try it

Solve the equation $7y \equiv 3 \pmod{26}$

What do we need to find?
The multiplicative inverse of $7 \pmod{26}$.

$15 \cdot 7 \cdot y \equiv 15 \cdot 3 \pmod{26}$

$y \equiv 45 \pmod{26}$
Or $y \equiv 19 \pmod{26}$
So $26 \mid 19 - y$, i.e. $26k = 19 - y$ (for $k \in \mathbb{Z}$) i.e. $y = 19 - 26 \cdot k$ for any $k \in \mathbb{Z}$
So {..., $-7, 19, 45, ...$ $19 + 26k$, ...}
And now, for some proofs!
GCD fact

If a and b are positive integers, then $\gcd(a,b) = \gcd(b, a \% b)$

How do you show two gcds are equal?
Call $a = \gcd(w, x), b = \gcd(y, z)$

If $b|w$ and $b|x$ then b is a common divisor of w, x so $b \leq a$
If $a|y$ and $a|z$ then a is a common divisor of y, z, so $a \leq b$
If $a \leq b$ and $b \leq a$ then $a = b$
gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).

We show that y is a common divisor of a and b.

By definition of gcd, y|b and y|(a%b). So it is enough to show that y|a.

Applying the definition of divides we get b = yk for an integer k, and (a%b) = yj for an integer j.

By definition of mod, a%b is a = qb + (a%b) for an integer q.

Plugging in both of our other equations:

a = qyk + yj = y(qk + j). Since q, k, and j are integers, y|a. Thus y is a common divisor of a, b and thus y ≤ x.
gcd(a,b) = gcd(b, a % b)

Let \(x = \text{gcd}(a, b) \) and \(y = \text{gcd}(b, a\%b) \).

We show that \(x \) is a common divisor of \(b \) and \(a\%b \).

By definition of gcd, \(x \mid b \) and \(x \mid a \). So it is enough to show that \(x \mid (a\%b) \).

Applying the definition of divides we get \(b = xk' \) for an integer \(k' \), and \(a = xj' \) for an integer \(j' \).

By definition of mod, \(a\%b \) is \(a = qb + (a\%b) \) for an integer \(q \).

Plugging in both of our other equations:

\[xj' = qxk' + a\%b. \]

Solving for \(a\%b \), we have \(a\%b = xj' - qxk' = x(j' - qk') \). So \(x \mid (a\%b) \). Thus \(x \) is a common divisor of \(b, a\%b \) and thus \(x \leq y \).
gcd(a,b) = gcd(b, a % b)

Let \(x = \gcd(a, b) \) and \(y = \gcd(b, a\%b) \).

We show that \(x \) is a common divisor of \(b \) and \(a\%b \).

We have shown \(x \leq y \) and \(y \leq x \).

Thus \(x = y \), and \(\gcd(a, b) = \gcd(b, a\%b) \).