New Proof Strategies

First:

- We didn't quite finish the lecture that was Friday's. So, please mark on your calendar to:
 - Find the remaining lecture on Canvas under Panopto-> Additional lecture material
 - Take the additional Canvas quiz.

And now:

- A new way of thinking of proofs:
- Here's one way to get an iron-clad guarantee:
- 1. Write down all the facts we know.
- 2. Combine the things we know to derive new facts.
- 3. Continue until what we want to show is a fact.

Drawing Conclusions

- You know "If it is raining, then I have my umbrella"
- And "It is raining" | have my umbrella!
 You should conclude....

 $(A \rightarrow B A A) \rightarrow K$ B

 For whatever you conclude, convert the statement to propositional logic – will your statement hold for any propositions, or is it specific to raining and umbrellas?

| know ($a \rightarrow b$) and a_i | can conclude b_i Or said another way: $[(a \rightarrow b) \land a] \rightarrow b$

Modus Ponens

• The inference from the last slide is always valid. I.e. $[(a \rightarrow b) \land a] \rightarrow b \equiv T$

Modus Ponens – a formal proof

$$\begin{array}{c}
\hline
[(a \rightarrow b) \land a] \rightarrow b \\
\equiv [(\neg a \lor b) \land a] \rightarrow b \\
\equiv [(a \land \neg a \lor b)] \rightarrow b \\
\equiv [(a \land \neg a) \lor (a \land b)] \rightarrow b \\
\equiv [F \lor (a \land b)] \rightarrow b \\
\equiv [(a \land b) \lor F] \rightarrow b \\
\equiv [(a \land b)] \rightarrow b \\
\equiv [\neg (a \land b)] \lor b \\
\equiv [\neg a \lor \neg b] \lor b \\
\equiv \neg a \lor [\neg b \lor b] \\
\equiv \neg a \lor T \checkmark \\
\equiv T
\end{array}$$

Law of Implication Commutativity Distributivity Negation Commutativity Identity Law of Implication DeMorgan's Law Ássociativity Commutativity Negation Domination

Modus Ponens

2

• The inference from the last slide is always valid. I.e. $[(a \rightarrow b) \land a] \rightarrow b \equiv T$

We use that inference A LOT

So often people gave it a name ("Modus Ponens")

So often...we don't have time to repeat that 12 line proof EVERY TIME.

Let's make this another law we can apply in a single step.

Just like refactoring a method in code.

Notation – Laws of Inference

- We're using the " \rightarrow " symbol A LOT.
- Too much

• Some new notation to make our lives easier. $M \mathcal{P} : (A^{(D)}) \sim A$ If we know both A and B A, B A, B A, B $C \wedge D$

": " means "therefore" – I knew A, B therefore I can conclude C, D.

$$\underbrace{a \to b, a}{\therefore \qquad b}$$

Modus Ponens, i.e. $[(a \rightarrow b) \land a] \rightarrow b)$, in our new notation.

Another Proof

- Let's keep going.
- I know "If it is raining then I have my umbrella" and "I do not have my umbr<u>ella</u>" It is not raining! 701
- I can conclude...
- $[(a \to b) \land \neg b] \to \neg a$ • What's the general form?
- How do you think the proof will go?
 - a->b, 1b • If you had to convince a friend of this claim in English, how would you do it?

0 4

 $\neg a$

A proof!

We know $a \rightarrow b$ and $\neg b$; we want to conclude $\neg a$. Let's try to prove it. Our goal is to list facts until our goal becomes a fact.

We'll number our facts, and put a justification for each new one.

A proof!

We know $a \rightarrow b$ and $\neg b$; we want to conclude $\neg a$.

Let's try to prove it. Our goal is to list facts until our goal becomes a fact.

We'll number our facts, and put a justification for each new one.

1.
$$a \rightarrow b$$
GivenCassumption1)2. $\neg b$ GivenZ

- 3. $\neg b \rightarrow \neg a$ Contrapositive of 1.4. $\neg a$ Modus Ponens on 3
- Modus Ponens on 3,2.

Try it yourselves

• Suppose you know $a \rightarrow b$, $\neg s \rightarrow \neg b$, and a. Give an argument to conclude s.

Try it yourselves

- Suppose you know $a \rightarrow b, \neg s \rightarrow \neg b$, and a. Give an argument to conclude s.
- 1. $a \rightarrow b$ Given2. $\neg s \rightarrow \neg b$ Given
- *3. a* Given
- *4. b* Modus Ponens 1,3
- 5. $b \rightarrow s$ Contrapositive of 2
- *6. s* Modus Ponens 5,4

More Inference Rules

- We need a couple more inference rules.
- These rules set us up to get facts in exactly the right form to apply the really useful rules.
- A lot like commutativity and distributivity in the propositional logic rules.

More Inference Rules

5,

• None of these rules are surprising, but they are useful.

The Direct Proof Rule

• We've been implicitly using another "rule" today, the direct proof rule

We will get a lot of mileage out of this rule...starting next time.

Caution

- Be careful! Logical inference rules can only be applied to **entire** facts. They cannot be applied to portions of a statement (the way our propositional rules could). Why not?
- Suppose we know $a \rightarrow b$, r. Can we conclude b?

One more Proof

• Show if we know: $a, b, [(a \land b) \rightarrow (r \land s)], r \rightarrow t$ we can conclude t.

One more Proof

• Show if we know: $a, b, [(a \land b) \rightarrow (r \land s)], r \rightarrow t$ we can conclude t.

1.	a	Given
2.	b	Given
<i>3.</i>	$[(a \land b) \to (r \land s)]$	Given
<i>4.</i>	$r \rightarrow t$	Given
<i>5</i> .	$a \wedge b$	Intro \land (1,2)
<u>6</u> .	$r \wedge s$	Modus Ponens (3,5)
<i>7</i> .	r	Eliminate \land (6)
<i>8</i> .	t	Modus Ponens (4,7)

About Grades

- Grades were critical in your lives up until now.
 - If you were in high school, they're critical for getting into college.
 - If you were at UW applying to CSE, they were key to that application
- Regardless of where you're going next, what you **learn** in this course matters FAR more than what your grade in this course.
- If you're planning on industry interviews matter more than grades.
- If you're planning on grad school letters matter most, those are based on doing work outside of class building off what you learned in class.

About Grades

- What that means:
- The TAs and I are going to prioritize your learning over debating whether -2 or -1 is "more fair"
- If you're worried about "have I explained enough" write more!
- It'll take you longer to write the Ed question than write the extended answer. We don't take off for too much work.
 - And the extra writing is going to help you learn more anyway.

Regrades

- TAs make mistakes!
- When I was a TA, I made errors on 1 or 2% of my grading that needed to be corrected. If we made a mistake, file a regrade request on gradescope.
- But those are only for mistakes, not for whether "-1 would be more fair"
- If you are confused, please talk to us!
 - My favorite office hours questions are "can we talk about the best way to do something on the homework we just got back?"
 - If **after** you do a regrade request on gradescope, you still think a grading was incorrect, send email to Robbie.
 - Regrade requests will close 2 weeks after homework is returned.

Negation

- Negate these sentences in English and translate the original and negation to predicate logic.
- All cats have nine lives.

 $\forall x (Cat(x) \rightarrow NumLives(x,9))$

• All dogs love every person. "There is a cat without 9 lives."

 $\forall x \forall y (Dog(x) \land Human(y) \rightarrow Love(x, y))$

 $\exists x \exists y (Dog(x) \land Human(y) \land \neg Love(x, y))$ "There is a dog who does not love someone." "There is a dog and a person such that the dog doesn't love that person." • There is a cat that loves someone.

> $\exists x \exists y (Cat(x) \land Human(y) \land Love(x, y) \\ \forall x \forall y ([Cat(x) \land Human(y)] \rightarrow \neg Love(x, y))$ "For every cat and every human, the cat does not love that human." "Every cat does not love any human" ("no cat loves any human")

How would you argue...

- Let's say you have a piece of code.
- And you think if the code gets null input then a nullPointerExecption will be thrown.
- How would you convince your friend?
- You'd probably trace the code, assuming you would get null input.
- The code was your **given**
- The null input is an assumption

In general

- How do you convince someone that a → b is true given some surrounding context/some surrounding givens?
- You suppose *a* is true (you assume *a*)
- And then you'll show b must also be true.
 - Just from *a* and the Given information.

The Direct Proof Rule

This rule is different from the others $-A \Rightarrow B$ is not a "single fact." It's an observation that we've done a proof. (i.e. that we showed fact B starting from A.)

We will get a lot of mileage out of this rule...starting today!

Given: $((a \rightarrow b) \land (b \rightarrow r))$ Show: $(a \rightarrow r)$ • Here's an incorrect proof.

1.	$(a \rightarrow b) \land (b \rightarrow r)$	Given
2.	$a \rightarrow b$	Eliminate ^ (1)
<i>3</i> .	$b \rightarrow r$	Eliminate Λ (1)
<i>4.</i>	a	Given???
<i>5.</i>	b	Modus Ponens 4,2
<u>6</u> .	r	Modus Ponens 5,3
7.	$a \rightarrow r$	Direct Proof Rule

Given: $((a \rightarrow b) \land (b \rightarrow r))$ Show: $(a \rightarrow r)$

• Here's an incorrect proof.

1.
$$(a \rightarrow b) \land (b \rightarrow r)$$

2. $a \rightarrow b$

 $3. \quad b \to r$

4. a

5. b

6. r

7. $a \rightarrow r$

Proofs are supposed to be lists of facts. Some of these "facts" aren't really facts...

Eliminate Λ (1)

Given ????

Modus Ponens 4,2]

Modus Ponens 5,3

Direct Proof Rule

These facts depend on a. But a isn't known generally. It was assumed for the purpose of proving $a \rightarrow r$.

Given:
$$((a \rightarrow b) \land (b \rightarrow r))$$

Show: $(a \rightarrow r)$

• Here's an incorrect proof.

1.
$$(a \to b) \land (b \to r)$$

2. $a \to b$
3. $b \to r$
4. a
5. b

6. r

7. $a \rightarrow r$

Proofs are supposed to be lists of facts. Some of these "facts" aren't really facts...

Eliminate Λ (1)

Given ????

Modus Ponens 4,2]

Modus Ponens 5,3

Direct Proof Rule

These facts depend on a. But a isn't known generally. It was assumed for the purpose of proving $a \rightarrow r$.

Given:
$$(a \rightarrow b) \land (b \rightarrow r))$$

Show: $(a \rightarrow r)$

• Here's a corrected version of the proof.

1. $(a \rightarrow b) \land (b \rightarrow r)$ 2. $a \rightarrow b$ 3. $b \rightarrow r$ 4.1 a4.2 b 4.3 r5. $a \rightarrow r$

Given

Eliminate ∧ 1 Eliminate ∧ 1

Assumption Modus Ponens 4.1,2 Modus Ponens 4.2,3

Direct Proof Rule

When introducing an assumption to prove an implication: Indent, and change numbering.

> When reached your conclusion, use the Direct Proof Rule to observe the implication is a fact.

The conclusion is an unconditional fact (doesn't depend on *a*) so it goes back up a level

Try it!

• Given: $a \lor b$, (a Show: $s \to a$ 1. $a \lor b$ 2. $(r \land s) \to \neg b$	$r \land s) \rightarrow \neg b, r.$ Given Given
3. r	Given
4.1 <i>s</i>	Assumption
4 .2 <i>r</i> ∧ <i>s</i>	Intro A (3,4.1)
4 .3 <i>¬b</i>	Modus Ponens (2, 4.2)
4 . 4 <i>b</i> ∨ <i>a</i>	Commutativity (1)
4 .5 <i>a</i>	Eliminate v (4.4, 4.3)
5. $s \rightarrow a$	Direct Proof Rule