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𝑜𝑢𝑡! = 𝑑"# 𝑑$#𝑑!′𝑠 + 𝑑"′𝑑$′𝑑!𝑠+𝑑"′𝑑$𝑑!′𝑠+𝑑"𝑑$′𝑑!′𝑠



Ick
WOW that’s ugly.

Be careful when wires cross – draw one “jumping over” the other.



Can we do better
Maybe the factored version will be better?

𝑜𝑢𝑡! = (𝑑"# 𝑑$#𝑑!′ + 𝑑"′𝑑$′𝑑!+𝑑"′𝑑$𝑑!′+𝑑"𝑑$′𝑑!′)𝑠



𝑜𝑢𝑡! = (𝑑"# 𝑑$#𝑑!′ +
𝑑"′𝑑$′𝑑!+𝑑"′𝑑$𝑑!′+𝑑"𝑑$′𝑑!′)𝑠







The Factored Version
Ehhhhhhh, it’s a little better?

Part of the problem here is Robbie’s art skills. 
Part is some layout choices – commuting the terms might make things 
prettier.

Most of the problem is just the circuit is complicated.
𝑜𝑢𝑡! is a little better.





Can we use these for anything?
Sometimes these concrete formulas lead to easier observations.
For example, we might have noticed we factored out 𝑠 or 𝑠"in three of 
the four, which suggests switching 𝑠 first.

We could see that from the rules too! But sometimes switching 
representations helps.



Can we use these for anything?
Is this code better? Maybe, maybe not. 
It’s another tool in your toolkit for thinking about logic
Including logic you write in code!



Takeaways
Yet another notation for propositions.
These are just more representations – there’s only one underlying set of 
rules. 

Next time: wrap up digital logic and the tool really represent 𝑥 > 5.



Another Proof
Let’s prove that 𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) is a tautology.

Alright, what are we trying to show?



Another Proof
𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) ≡ ¬ 𝑝 ∧ 𝑞 ∨ 𝑞 ∨ 𝑝

≡ ¬𝑝 ∨ ¬𝑞 ∨ (𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑞 ∨ 𝑞 ∨ 𝑝 )
≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑞 ∨ 𝑝
≡ ¬𝑝 ∨ ( 𝑞 ∨ ¬𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (T ∨ 𝑝)
≡ ¬𝑝 ∨ (𝑝 ∨ T)
≡ ¬𝑝 ∨ T
≡ T

Law of Implication
It’s easier if everything is AND/OR/NOT

Associative (twice)
Put 𝑞,¬𝑞 next to each other.

DeMorgan’s Law
Gets rid of some parentheses/just a gut feeling.

Commutative, Negation
Simplify out the 𝑞,¬𝑞.Commutative, Domination, Domination
Simplify until we get T.

Proof-writing tip:
Take a step back.
Pause and carefully look 
at what you have. You 
might see where to go 
next…

We’re done!



Another Proof
𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) ≡ ¬ 𝑝 ∧ 𝑞 ∨ 𝑞 ∨ 𝑝

≡ ¬𝑝 ∨ ¬𝑞 ∨ (𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑞 ∨ 𝑞 ∨ 𝑝 )
≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑞 ∨ 𝑝
≡ ¬𝑝 ∨ ( 𝑞 ∨ ¬𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (T ∨ 𝑝)
≡ ¬𝑝 ∨ (𝑝 ∨ T)
≡ ¬𝑝 ∨ T
≡ T

Law of implication
DeMorgan’s Law
Associative
Associative
Commutative
Negation
Commutative
Domination
Domination



Today
Wrap up digital logic with “standard” ways to read propositions from 
truth tables.
Propositional logic – how do we handle logic with more than one 
“entity”



Canonical Forms
A truth table is a unique representation of a Boolean Function.
If you describe a function, there’s only one possible truth table for it.

Given a truth table you can find many circuits and many compound 
prepositions to represent it.
Think back to when we were developing the law of implication…



Using Our Rules
WOW that was a lot of rules.
Why do we need them? Simplification!
Let’s go back to the “law of implication” example. 

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T

When is the implication true? Just “or” each of the three 
“true” lines!

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
Also seems pretty reasonable
So is 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ (¬𝑝 ∨ 𝑞)
i.e. are these both alternative representations of 𝑝 → 𝑞?



Canonical Forms
A truth table is a unique representation of a Boolean Function.
If you describe a function, there’s only one possible truth table for it.

Given a truth table you can find many circuits and many compound 
prepositions to represent it.
Think back to when we were developing the law of implication…

It would be nice to have a “standard” proposition (or standard circuit) 
we could always write as a starting point.
So we have a (possibly) shorter way of telling if we have the same function.



Disjunctive Normal Form (DNF)
a.k.a. OR of ANDs
a.k.a Sum-of-Products Form
a.k.a. Minterm Expansion
1. Read the true rows of the truth table
2. AND together all the settings in a given (true) row.
3. OR together the true rows.



Disjunctive Normal Form

𝑝 𝑞 𝐺(𝑝, 𝑞)

T T T

T F F

F T T

F F F

1. Read the true rows of the truth table
2. AND together all the settings in a 

given (true) row.
3. OR together the true rows.𝑝 ∧ 𝑞

¬𝑝 ∧ 𝑞

𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ 𝑞)



Another Canonical Form
DNF is a great way to represent functions that are usually false.
If there are only a few true rows, the representation is short.

What about functions that are usually true?
Well 𝐺 is equivalent to ¬¬𝐺, and ¬𝐺 is a function that is usually false.
Let’s try taking the Sum-of-Products of ¬𝐺 and negating it.



Another Canonical Form

𝑝 𝑞 𝐺(𝑝, 𝑞) ¬𝐺(𝑝, 𝑞)

T T T F

T F F T

F T T F

F F F T

1. Read the true rows of the truth table
2. AND together all the settings in a 

given (true) row.
3. OR together the true rows.

𝑝 ∧ ¬𝑞

¬𝑝 ∧ ¬𝑞

¬𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ ¬𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
𝐺 𝑝, 𝑞 ≡ ¬[ 𝑝 ∧ ¬𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
𝐺 𝑝, 𝑞 ≡ ¬ 𝑝 ∧ ¬𝑞 ∧ ¬ ¬𝑝 ∧ ¬𝑞

𝐺 𝑝, 𝑞 ≡ [ ¬𝑝 ∨ 𝑞 ∧ 𝑝 ∨ 𝑞 ]

This is not in 
Disjunctive 
Normal Form! 
It’s something 
else, though…



Conjunctive Normal Form
a.k.a. AND of ORs
a.k.a. Product-of-Sums Form
a.k.a. Maxterm Expansion
1. Read the false rows of the truth table
2. OR together all the settings in the false rows.
3. AND together the false rows.

Or take the DNF of the negation of the function you care about, and 
distribute the negation.



Normal Forms
Don’t simplify any further! Don’t factor anything out (even if you can). 
The point of the canonical form is we know exactly what it looks like, 
you might simplify differently than someone else.

Why? Easier to understand for people.
Inside the parentheses are only ORs between the parentheses are only ANDs (or 
vice versa). 

You’ll use these more in later courses.



Predicate Logic



Predicate Logic
So far our propositions have worked great for fixed objects.

What if we want to say “If 𝑥 > 10 then 𝑥# > 100.”
𝑥 > 10 isn’t a proposition. Its truth value depends on 𝑥. 

We need a function that can take in a value for 𝑥 and output True or 
False as appropriate.



Predicates

Cat(x):= “x is a cat”
Prime(x) := “x is prime”
LessThan(x,y):= “x<y”
Sum(x,y,z):= “x+y=z”
HasNChars(s,n):= “string s has length n”

Numbers and types of inputs can change. Only requirement is output is 
Boolean.

A function that outputs true or false.
Predicate



Analogy
Propositions were like Boolean variables.
What are propositions? Functions that return Booleans
public boolean prop(…)



Translation
Translation works a lot like when we just had propositions.
Let’s try it…

𝑥 is prime or 𝑥# is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥# ∨ Equals 𝑥, 2



Domain of Discourse
𝑥 is prime or 𝑥# is odd or 𝑥 = 2.
Prime 𝑥 ∨ Odd 𝑥# ∨ Equals 𝑥, 2

Can 𝑥 be 4.5? What about “abc” ?
I never intended you to plug 4.5 or “abc” into 𝑥.
When you read the sentence you probably didn’t imagine plugging 
those values in….



Domain of Discourse
𝑥 is prime or 𝑥# is odd or 𝑥 = 2.
Prime 𝑥 ∨ Odd 𝑥# ∨ Equals 𝑥, 2

To make sure we can’t plug in 4.5 for 𝑥, predicate logic requires 
deciding on the types we’ll allow 

The types of inputs allowed in our predicates.

Domain of Discourse



Try it…
What’s a possible domain of discourse for these lists of predicates?

1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"



Try it…
What’s a possible domain of discourse for these lists of predicates?
1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"

“Mammals”, “pets”, “dogs and cats”, … 

“positive integers”, “integers”, “numbers”, … 

“objects in the university course enrollment system”, “university 
entities”, “students and courses”, … 

More than one domain of discourse might be reasonable…if it might affect the 
meaning/truth value of the statement, we specify it. 



Quantifiers
Now that we have variables, let’s really use them…
We tend to use variables for two reasons:
1. The statement is true for every 𝑥, we just want to refer to it.
2. There’s some 𝑥 out there that works, (but I might not know which it 

is, so I’m using a variable). 

Either way, this variable needs to be introduced or it is “out of scope” 👻



Quantifiers
If  we want to talk about all
items in the domain of  
discourse:

P is true for every element

∀ 𝑥. 𝑃(𝑥)
“For all”, 
Universal quantification

If  we want to talk about some
item in the domain of  
discourse:

Q is true for some element

∃ 𝑥. 𝑄(𝑥)
“There exists”
Existential quantification



Quantifiers
These two extra symbols  indicate which way we’re using a variable.
1. The statement is true for every 𝑥, we just want to put a name on it.
∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 
2. There’s some 𝑥 out there that works, (but I might not know which it 

is, so I’m using a variable). 
∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, such that 𝑝(𝑥) and 
𝑞 𝑥 are both true.



Quantifiers
We have two extra symbols to indicate which way we’re using the 
variable.
1. The statement is true for every 𝑥, we just want to put a name on it.
∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 
2. There’s some 𝑥 out there that works, (but I might not know which it 

is, so I’m using a variable). 
∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, 𝑝(𝑥) and 𝑞 𝑥 are 
both true.

“∀𝑥“
“for each 𝑥”, “for every 𝑥”, “for all 𝑥” are common translations

Remember: upside-down-A for All.

Universal Quantifier



Quantifiers
We have two extra symbols to indicate which way we’re using the 
variable.
1. The statement is true for every 𝑥, we just want to put a name on it.
∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 
2. There’s some 𝑥 out there that works, (but I might not know which it 

is, so I’m using a variable). 
∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, for which 𝑝(𝑥) and 
𝑞 𝑥 are both true.

“∃𝑥“
“there is an 𝑥”, “there exists an 𝑥”, “for some 𝑥” are common translations

Remember: backwards-E for Exists.

Existential Quantifier



Translations
“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧Odd 𝑦 )
Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse311 and login 
with your UW identity

Or text cse311 to 22333



Translations
“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧Odd 𝑦 )

∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

∃𝑥∃𝑦(LessThan 𝑥, 𝑦 )

There is an odd number that is less than 5.

All numbers are both even and odd.



Translations
More practice in section and on homework.

Also a reading on the webpage –
An explanation of why “for any” is not a great way to translate ∀ (even though it 
looks like a good option on the surface)
More information on what happens with multiple quantifiers (we’ll discuss more 
next week).



Evaluating Predicate Logic
“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )
Is this true?



Evaluating Predicate Logic
“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )
Is this true?
TRICK QUESTION! It depends on the domain. 

Prime Numbers Positive Integers Odd integers

True False True (vacuously)



One Technical Matter
How do we parse sentences with quantifiers? 
What’s the “order of operations?”

We will usually put parentheses right after the quantifier and variable to 
make it clear what’s included. If we don’t, it’s the rest of the expression.

Be careful with repeated variables…they don’t always mean what you 
think they mean.
∀𝑥 𝑃 𝑥 ∧ ∀𝑥(𝑄 𝑥 ) are different 𝑥’s.



More Practice
Let your domain of discourse be fruits.

There is a fruit that is tasty and ripe.

For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.

∃𝑥(Tasty 𝑥 ∧Ripe 𝑥 )

∀𝑥(¬Ripe 𝑥 → ¬Tasty 𝑥 )

∃𝑥(Sliced 𝑥 ∧ Diced 𝑥 )


