Notes

- Do not collaborate with anyone besides your prescribed Canvas group.
- The same rules apply as to your homework: you may discuss the problems together, but you must write up your solutions separately, without notes or other artefacts of your discussions.
- You may refer to course materials but no other external materials (no other websites, textbooks, etc). If you unintentionally run into materials relevant to this exam, please cite them.
- The extra credit problem will be worth more substantial points than the usual homework extra credit, worth between \(\frac{1}{2} \) and 1 of the other problems.

1. Induction: a recurrent topic

Consider the following recursively defined function:

\[
T(n) = \begin{cases}
3 & \text{if } n = 1 \\
6 & \text{if } n = 2 \\
18 & \text{if } n = 3 \\
T(n-3)(n^3 - 3n^2 + 2n) & \text{Otherwise}
\end{cases}
\]

Use induction to prove that that \(T(n) = 3(n!) \) for all \(n \geq 1 \).

2. Putting it all together

Consider the alphabet \(\Sigma = \{0, 1, \diamond\} \).

- Let \(A \) be the set of strings \(x \) from \(\Sigma^* \) such that the following formula holds, where \(\text{CharAt}(x, y, z) \) means that \(x \in \Sigma^* \), \(y \in \mathbb{N} \), \(z \in \Sigma \) and \(z \) is the \(y \)-th character in \(x \).

\[
\forall i \forall j \forall k \forall c \left(\text{CharAt}(x, i, \diamond) \land \text{CharAt}(x, k, c) \land i < k \rightarrow \left(c \neq \diamond \land \left[(i < j \land j < k \land \text{CharAt}(x, j, 1)) \rightarrow c \neq 0 \right]\right) \right)
\]

- Let \(B \) be the set of strings generated by the following CFG.

\[
S \rightarrow A \mid A \diamond M \\
A \rightarrow 0A \mid 1A \mid \varepsilon \\
M \rightarrow 0M \mid M1 \mid MM \mid \varepsilon
\]

- Let \(C \) be the set of strings accepted by the following NFA.

(a) Determine, with proof, whether the sets \(A \) and \(B \) are equal.

(b) Determine, with proof, whether the sets \(A \) and \(C \) are equal.
3. **Structurally Sound**

Prove the regular expression $(3^*1^*3^*)^*$ matches the same language as $(3 \cup 1 \cup 1)^*$, using structural induction on strings over $\Sigma = \{[0 - 9], [A - Z], [a - z]\}$.

4. **Extra credit: Em-POWER-ed Sets**

Let $P(A)$ represent the powerset of set A. We can easily argue that $P(\mathbb{N})$ is bijective with \mathbb{R}. The proof for this is the standard diagonalization proof for uncountable sets.

Now, suppose I had some set A such that $P(A)$ is bijective with \mathbb{N}. Describe this set A or prove that no such set can exist.