Section 05: Number Theory

1. GCD
 (a) Calculate gcd(100, 50).

 (b) Calculate gcd(17, 31).

 (c) Find the multiplicative inverse of 6 \text{(mod 7)}.

 (d) Does 49 have a multiplicative inverse \text{(mod 7)}?

2. Extended Euclidean Algorithm
 (a) Find the multiplicative inverse y of 7mod 33. That is, find y such that $7y \equiv 1 \text{ (mod 33)}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y < 33$.

 (b) Now, solve $7z \equiv 2 \text{(mod 33)}$ for all of its integer solutions z.

3. Euclid’s Lemma\(^1\)
 (a) Show that if an integer p divides the product of two integers a and b, and $\text{gcd}(p, a) = 1$, then p divides b.

 (b) Show that if a prime p divides ab where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

4. Have we derived yet?

Each of the following proofs has some mistake in its reasoning - identify that mistake.

 (a) Proof. If it is sunny, then it is not raining. It is not sunny. Therefore it is raining. \(\square\)

 (b) Prove that if $x + y$ is odd, either x or y is odd but not both.

\(^1\)these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck – use these as a chance to practice how to get unstuck if you do!
Proof. Suppose without loss of generality that x is odd and y is even. Then, $\exists k \ x = 2k + 1$ and $\exists m \ y = 2m$. Adding these together, we can see that $x + y = 2k + 1 + 2m = 2k + 2m + 1 = 2(k + m) + 1$. Since k and m are integers, we know that $k + m$ is also an integer. So, we can say that $x + y$ is odd. Hence, we have shown what is required.

(c) Prove that $2 = 1$. :)

Proof. Let a, b be two equal, non-zero integers. Then,

\[
\begin{align*}
 a &= b \\
 a^2 &= ab & \text{[Multiply both sides by a]} \\
 a^2 - b^2 &= ab - b^2 & \text{[Subtract b^2 from both sides]} \\
 (a - b)(a + b) &= b(a - b) & \text{[Factor both sides]} \\
 a + b &= b & \text{[Divide both sides by $a - b$]} \\
 b + b &= b & \text{[Since $a = b$]} \\
 2b &= b & \text{[Simplify]} \\
 2 &= 1 & \text{[Divide both sides by b]}
\end{align*}
\]

(d) Prove that $\sqrt{3} + \sqrt{7} < \sqrt{20}$

Proof.

\[
\begin{align*}
 \sqrt{3} + \sqrt{7} &< \sqrt{20} \\
 (\sqrt{3} + \sqrt{7})^2 &< 20 \\
 3 + 2\sqrt{21} + 7 &< 20 \\
 19.165 &< 20
\end{align*}
\]

It is true that $19.165 < 20$, hence, we have shown that $\sqrt{3} + \sqrt{7} < \sqrt{20}$