Laws Relating to Equivalence 1.

(Refer to the Logical Equivalences reference sheet for a full list.)

- De Morgan's Laws:
- $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$ • Law of Implication: $p \to q \equiv \neg p \lor q$ • Contrapositive: $p \to q \equiv \neg q \to \neg p$ • Biconditional $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ • Double Negation: $p \equiv \neg \neg p$

Digital Circuits 2.

 $q \wedge r$

т т

т F F

F т F

And Gate

AND Connective vs.

 $q \wedge r$

AND Gate

OUT

1

0

0

0

C	OR Connective				OR Gate			
<i>q</i> ∨ <i>r</i>								
	q	r	$q \lor r$		q	r	ουτ	
	т	т	т		1	1	1	
	т	F	т		1	0	1	
	F	т	т		0	1	1	
	F	F	F		0	0	0	

Or Gate

"arrowhead block looks like V"

Not Gates

3. Boolean Algebra

- Canonical form: Standard form for a boolean expression
- Sum of Products Canonical Form (AKA Disjunctive Normal Form (DNF) or Minterm Expansion):
 - Identify the rows with output True in the truth table.
 - Take the product terms for these rows by ANDing the literals (input combination).
 - OR the identified product terms. This is the DNF canonical form expression.
- Product of Sums Canonical Form (AKA Conjunctive Normal Form (CNF) or Maxterm Expansion):
 - Identify the rows with output False in the truth table.
 - Take the sum terms for these rows by ORing the negated literals (input combination).
 - AND the identified sum terms. This is the CNF canonical form expression.

4. Predicate Logic

- **Predicate:** A function that returns a truth value (True or False). Can have varying numbers of arguments and input types.
- Domain of discourse: Non-empty set of objects that a predicate is defined over
- Universal quantifier: Represented by ∀ (read as "for all"). Often translated as "for all", "for each", or "for every".
- Existential quantifier: Represented by ∃ (read as "there exists"). Often translated as "there exists", "there is", or "for some".
- De Morgan's Laws for Quantifiers:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

5. Guidelines for Translating Predicate Logic

- When there is no leading quantification, it generally means "for all".
- Some means "there exists"
- Domain Restriction
 - When restricting to a smaller domain in a "for all", we use implication.
 - When restricting to a smaller domain in an "exists", we use and.