Sets Reference Sheet

Common Sets

- $\mathbb{N} = \{0, 1, 2, \dots\}$ is the set of *Natural Numbers*.
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ is the set of *Integers*.
- $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \land q \neq 0 \right\}$ is the set of *Rational Numbers*.
- \mathbb{R} is the set of *Real Numbers*.

Containment, Equality, and Subsets

Let A, B be sets. Then:

- $x \in A$ ("x is an element of A") means that x is an element of A.
- $x \notin A$ ("x is not an element of A") means that x is not an element of A.
- $A \subseteq B$ ("A is a subset of B") means that all the elements of A are also in B.
- $A \not\subseteq B$ ("A is a **not** a *subset* of B") means that some element of A is not also in B.
- $A \supseteq B$ ("A is a superset of B") means that all the elements of B are also in A.
- $(A = B) \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x \ (x \in A \leftrightarrow x \in B)$

Set Operations

Let A, B be sets. Then:

- $A \cup B$ is the union of A and B. $A \cup B = \{x : x \in A \lor x \in B\}$.
- $A \cap B$ is the intersection of A and B. $A \cap B = \{x : x \in A \land x \in B\}.$
- $A \setminus B$ is the difference of A and B. $A \setminus B = \{x : x \in A \land x \notin B\}$.
- $A \oplus B$ is the symmetric difference of A and B. $A \oplus B = \{x : x \in A \oplus x \in B\}$.
- \overline{A} is the *complement* of A. If we restrict ourselves to a "universal set", \mathcal{U} , (a set of all possible things we're discussing), then $\overline{A} = \{x \in \mathcal{U} : x \notin A\}$.

Set Constructions

Let A, B, C, D be sets. Then:

- $S = \{x : P(x)\}$ is set builder notation which means S is the set that contains all objects x with property P (and no other elements).
- $A \times B$ is the cartesian product of A and B. $A \times B = \{(a, b) : a \in A, b \in B\}$.
- [n] ("brackets n") is the set of integers from 1 to n. $[n] = \{x \in \mathbb{Z} : 1 \le x \le n\}$.
- $\mathcal{P}(A)$ is the power set of A. $\mathcal{P}(A) = \{S : S \subseteq A\}$. $\mathcal{P}(A)$ is the set of all subsets of A.