## Number Theory Reference Sheet

## Definitions

Let $\mathbb{Z}$ be the set of integers: $\{\ldots,-2,-1,0,1,2, \ldots\}$.
Let $\mathbb{Z}^{+}$be the set of positive integers: $\{1,2,3, \ldots\}$.
Let $\mathbb{N}$ be the set of nonnegative integers: $\{0,1,2, \ldots\}$.
Definition: $a \mid b$ (" $a$ divides $b$ ")

$$
\text { For } a, b \in \mathbb{Z} \text { : }
$$

$$
a \mid b \text { iff } \exists(k \in \mathbb{Z}) b=k a
$$

Definition: $a \equiv b(\bmod n)$ (" $a$ is congruent to $b$ modulo $n$ )"
For $a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}: \quad a \equiv b(\bmod m)$ iff $m \mid(b-a)$

## Definition: prime

An integer $p>1$ is prime if its only positive divisors are 1 and itself.

## Definition: composite

An integer $p>1$ is composite if it has a positive divisor other than 1 and itself.

## Definition: gcd ("greatest common divisor")

$\operatorname{gcd}(a, b)$ is the largest integer $c$ such that $c \mid a$ and $c \mid b$.

## Definition: "least common multiple"

$\operatorname{lcm}(a, b)$ is the smallest positive integer $c$ such that $a \mid c$ and $b \mid c$.

## Theorems

## Theorem: Division Theorem

If $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$, then there exist unique $q, r \in \mathbb{Z}$, where $0 \leq r<d$ such that $a=d q+r$.
We call $q$ "the quotient" and $r=a \% d$ the "remainder".

## Theorem: Relation Between Mod and Congruences

Suppose $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$
$a \equiv b(\bmod n) \leftrightarrow a \% n=b \% n$.

## Theorem: Adding Congruences

Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$:
$(a \equiv b(\bmod n) \wedge c \equiv d(\bmod n)) \rightarrow a+c \equiv b+d(\bmod n)$.

## Theorem: Multiplying Congruences

Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$
$(a \equiv b(\bmod n) \wedge c \equiv d(\bmod n)) \rightarrow a c \equiv b d(\bmod n)$.

## Theorem: Additivity of mod

If $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$, then $(a+b) \% n=((a \% n)+(b \% n)) \% n$

## Theorem: Multiplicativity of mod

If $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$, then $(a \cdot b) \% n=((a \% n) \cdot(b \% n)) \% n$

Theorem: Subtraction of modulus
If $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$, then $a \% n=(a-n) \% n$

Theorem: Base $b$ Representation of Integers
Suppose $n$ is a positive integer (in base $b$ ) with exactly $m$ digits.
Then, $n=\sum_{i=0}^{m-1} d_{i} b^{i}$, where $d_{i}$ is a constant representing the $i$-th digit of $n$.

Theorem: Raising Congruences To A Power
If $a, b \in \mathbb{Z}, i \in \mathbb{N}$, and $n \in \mathbb{Z}^{+}$, then $a \equiv b(\bmod n) \rightarrow a^{i} \equiv b^{i}(\bmod n)$.

## Theorem: GCD Facts

Let $a, b \in \mathbb{Z}^{+}$

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)
$$

$$
\operatorname{gcd}(a, 0)=a
$$

## Theorem: Bézout's Theorem

If $a, b \in \mathbb{Z}^{+}$, then there exists integers $s, t$ such that:

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Theorem: Fundamental Theorem of Arithmetic
If $q \in \mathbb{Z}^{+}$then $q$ has a unique prime factorization.

