Number Theory Reference Sheet

Definitions

Let \mathbb{Z} be the set of integers: {..., -2, -1, 0, 1, 2, ...}.

Let \mathbb{Z}^+ be the set of positive integers: $\{1, 2, 3, \ldots\}$.

Let $\mathbb N$ be the set of nonnegative integers: $\{0,1,2,\ldots\}.$

Definition: $a \mid b$ ("a divides b")

For $a, b \in \mathbb{Z}$:

 $a \mid b \text{ iff } \exists (k \in \mathbb{Z}) \ b = ka$

Definition: $a \equiv b \pmod{n}$ ("a is congruent to b modulo n)"

For $a, b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$:

 $a \equiv b \pmod{m}$ iff $m \mid (b-a)$

Definition: prime

An integer p > 1 is prime if its only positive divisors are 1 and itself.

Definition: composite

An integer p > 1 is composite if it has a positive divisor other than 1 and itself.

Definition: gcd ("greatest common divisor")

gcd(a, b) is the largest integer c such that $c \mid a$ and $c \mid b$.

Definition: "least common multiple"

lcm(a, b) is the smallest positive integer c such that $a \mid c$ and $b \mid c$.

Theorems

Theorem: Division Theorem

If $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, then there exist unique $q, r \in \mathbb{Z}$, where $0 \le r < d$ such that a = dq + r.

We call q "the quotient" and r = a% d the "remainder".

Theorem: Relation Between Mod and Congruences

Suppose $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ $a \equiv b \pmod{n} \leftrightarrow a\%n = b\%n.$

Theorem: Adding Congruences

Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$: $(a \equiv b \pmod{n} \land c \equiv d \pmod{n}) \rightarrow a + c \equiv b + d \pmod{n}.$

Theorem: Multiplying Congruences

Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ $(a \equiv b \pmod{n} \land c \equiv d \pmod{n}) \rightarrow ac \equiv bd \pmod{n}.$

Theorem: Additivity of mod

If $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, then (a + b)%n = ((a%n) + (b%n))%n

Theorem: Multiplicativity of mod

If $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, then $(a \cdot b)\% n = ((a\% n) \cdot (b\% n))\% n$

Theorem: Subtraction of modulus

If $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, then a % n = (a - n) % n

Theorem: Base b Representation of Integers

Suppose n is a positive integer (in base b) with exactly m digits.

Then,
$$n = \sum_{i=0}^{m-1} d_i b^i$$
, where d_i is a constant representing the *i*-th digit of *n*.

Theorem: Raising Congruences To A Power

If $a, b \in \mathbb{Z}$, $i \in \mathbb{N}$, and $n \in \mathbb{Z}^+$, then $a \equiv b \pmod{n} \rightarrow a^i \equiv b^i \pmod{n}$.

Theorem: GCD Facts

Let $a, b \in \mathbb{Z}^+$

$$gcd(a,b) = gcd(b,a\%b)$$

 $\gcd(a,0) = a$

Theorem: Bézout's Theorem

If $a, b \in \mathbb{Z}^+$, then there exists integers s, t such that:

 $\gcd(a,b)=sa+tb$

Theorem: Fundamental Theorem of Arithmetic

If $q \in \mathbb{Z}^+$ then q has a unique prime factorization.