

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer (n, e) (not p, q)

You want to send Amazon your credit card number a.

You compute $C = a^e \% n$ and send Amazon C.

Amazon computes d, the multiplicative inverse of e (mod [p-1][q-1]) Amazon finds $C^d \% n$

Fact: $a = C^d \% n$ as long as 0 < a < n and $p \nmid a$ and $q \nmid a$

How big are those numbers?

How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It's a nice combination of lots of things we've done with modular arithmetic.

Let's talk about finding $C = a^e \% n$. *e* is a BIG number (about 2^{16} is a common choice) int total = 1; for (int i = 0; i < e; i++) { total = (a * total) % n;

Let's build a faster algorithm.

```
Fast exponentiation – simple case. What if e is exactly 2^{16}?
int total = 1;
for (int i = 0; i < e; i++) {
     total = a * total % n;
Instead:
int total = a;
for(int i = 0; i < log(e); i++) {</pre>
     total = total^2 % n;
```

What if *e* isn't exactly a power of 2?

Step 1: Write *e* in binary.

Step 2: Find $a^c \% n$ for c every power of 2 up to e.

Step 3: calculate a^e by multiplying a^c for all c where binary expansion of e had a 1.

Find 4¹¹%10

Step 1: Write *e* in binary.

Step 2: Find $a^c \% n$ for c every power of 2 up to e.

Step 3: calculate a^e by multiplying a^c for all c where binary expansion of e had a 1.

Start with largest power of 2 less than e (8). 8's place gets a 1. Subtract power

Go to next lower power of 2, if remainder of *e* is larger, place gets a 1, subtract power; else place gets a 0 (leave remainder alone).

 $11 = 1011_2$

Find 4¹¹%10

Step 1: Write *e* in binary.

Step 2: Find $a^c \% n$ for c every power of 2 up to e.

Step 3: calculate a^e by multiplying a^c for all c where binary expansion of e had a 1.

 $4^{1}\%10 = 4$ $4^{2}\%10 = 6$ $4^{4}\%10 = 6^{2}\%10 = 6$ $4^{8}\%10 = 6^{2}\%10 = 6$

Find 4¹¹%10

4

Step 1: Write *e* in binary.

Step 2: Find $a^c \% n$ for c every power of 2 up to e.

Step 3: calculate a^e by multiplying a^c for all c where binary expansion of e had a 1.

$$4^{1}\%10 = 4$$

$$4^{1}\%10 = 4$$

$$4^{2}\%10 = 6$$

$$4^{4}\%10 = 6^{2}\%10 = 6$$

$$4^{8}\%10 = 6^{2}\%10 = 6$$

$$4^{8}\%10 = 6^{2}\%10 = 6$$

$$4^{8}\%10 = 6^{2}\%10 = 6$$

$$4^{11}\%10 = 4^{8+2+1}\%10 =$$

$$[(4^{8}\%10) \cdot (4^{2}\%10) \cdot (4\%10)]\%10 = (6 \cdot 6 \cdot 4)\%10 =$$

$$= (36\%10 \cdot 4)\%10 = (6 \cdot 4)\%10 = 24\%10 = 4.$$

Is it...actually fast?

The number of multiplications is between $\log_2 e$ and $2 \log_2 e$. That's A LOT smaller than e

One More Example for Reference

Find 3²⁵%7 using the fast exponentiation algorithm.

Find 25 in binary:

16 is the largest power of 2 smaller than 25. (25 - 16) = 9 remaining 8 is smaller than 9. (9 - 8) = 1 remaining.

4s place gets a 0.

2s place gets a 0

1s place gets a 1

110012

One More Example for Reference

Find 3²⁵%7 using the fast exponentiation algorithm.

Find $3^{2^{i}}\%7$: $3^{1}\%7 = 3$ $3^{2}\%7 = 9\%7 = 2$ $3^{4}\%7 = (3^{2} \cdot 3^{2})\%7 = (2 \cdot 2)\%7 = 4$ $3^{8}\%7 = (3^{4} \cdot 3^{4})\%7 = (4 \cdot 4)\%7 = 2$ $3^{16}\%7 = (3^{8} \cdot 3^{8})\%7 = (2 \cdot 2)\%7 = 4$

One More Example for Reference

Find 3²⁵%7 using the fast exponentiation algorithm.

 $3^{1}\%7 = 3$ $3^{2}\%7 = 2$ $3^{4}\%7 = 4$ $3^{8}\%7 = 2$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$ $3^{16}\%7 = 4$

A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number "secret"?

Raising numbers to large exponents (in mod arithmetic) and finding multiplicative inverses in modular arithmetic are things computers can do quickly.

But factoring numbers (to find p, q to get d) or finding an "exponential inverse" (not a real term) directly are not things computers can do quickly. At least as far as we know.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer (n, e) (not p, q)

You want to send Amazon your credit card number *a*.

You compute $C = a^e \% n$ and send Amazon C.

Amazon computes d, the multiplicative inverse of e (mod [p-1][q-1]) Amazon finds $C^d \% n$

Fact: $a = C^d \% n$ as long as 0 < a < n and $p \nmid a$ and $q \nmid a$