
CSE 311: Foundations of Computing

Lecture 28:   Turing machines



Recap: Proving irregularity

• Let 𝐿 ⊆ Σ∗ be a language.
• Let 𝑥 ∼" 𝑦 iff ∀𝑧 ∈ Σ∗ 𝑥𝑧 ∈ 𝐿 ↔ 𝑦𝑧 ∈ 𝐿

(intuitively: 𝑥 ≁" 𝑦 means DFA needs to 
distinguish 𝑥 from 𝑦)

Theorem. Let 𝐿 ⊆ Σ∗. If there is an infinite set 𝑆 ⊆ Σ∗
with 𝑥 ≁" 𝑦 for all distinct 𝑥, 𝑦 ∈ 𝑆, then 𝐿 is 
irregular.



Recap: Proving irregularity

• Let 𝐿 ⊆ Σ∗ be a language.
• Let 𝑥 ∼" 𝑦 iff ∀𝑧 ∈ Σ∗ 𝑥𝑧 ∈ 𝐿 ↔ 𝑦𝑧 ∈ 𝐿

(intuitively: 𝑥 ≁" 𝑦 means DFA needs to 
distinguish 𝑥 from 𝑦)

Theorem. Let 𝐿 ⊆ Σ∗. If there is an infinite set 𝑆 ⊆ Σ∗
with 𝑥 ≁" 𝑦 for all distinct 𝑥, 𝑦 ∈ 𝑆, then 𝐿 is 
irregular.

Idea: If DFA is in same state after reading 𝑥 and 𝑦
then it is making a mistake.
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Last time: Languages and Representations

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

{001, 10, 12}

e.g. palindromes, balanced parens, {0n1n:n≥0}

Turing machines / Java



Computers and algorithms

• Does Java (or any programming language) cover all possible 
computation? Every possible algorithm?

• There was a time when computers were people who did 
calculations on sheets paper to solve computational 
problems

• Computers as we known them arose from trying to 
understand everything these people could do.



Before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)
– basis of modern computers

• Lambda Calculus (Church)
– basis for functional programming, LISP

• µ-recursive functions (Kleene)
– alternative functional programming basis



Turing machines

Church-Turing Thesis:
Any reasonable model of computation that includes all 

possible algorithms is equivalent in power to a Turing 
machine

Evidence
– Intuitive justification
– Huge numbers of models based on radically 

different ideas turned out to be equivalent to TMs



Turing machines

• Finite Control
– Brain/CPU  that has only a finite # of possible “states of 

mind”
• Recording medium
– An unlimited supply of blank “scratch paper” on which to 

write & read symbols, each chosen from a finite set of 
possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the 

recording medium at once
– Focus of attention can only shift a small amount at a 

time

_ _ 1 1 0 1 1 _ _



Turing machines
• Recording medium

– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape containing 

the input string
– Read/write head can scan one cell of the tape - starts on input

• In each step, a Turing machine
1. Reads the currently scanned cell
2. Based on current state and scanned symbol 

i. Overwrites symbol in scanned cell
ii. Moves read/write head left or right one cell
iii. Changes to a new state

• Each Turing Machine is specified by its finite set of rules
• At any point TM can decide to either terminate & accept or

terminate & reject

_ _ 1 1 0 1 1 _ _



Turing machines

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1, L, s3) (1, L, s4) (0, R, s2)

s2 (0, R, s1) (1, R, s1) (0, R, s1)

s3

s4



UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell



Lecture 28 Activity
• You will be assigned to breakout rooms. Please:
• Introduce yourself
• Choose someone to share screen, showing this PDF 
• Construct a Turing machine that recognizes the language 𝐿 =

{0!1!: 𝑛 ≥ 0} (high level description suffices).
• We recommend structuring the TM in 2 phases:

– Phase 1: Verify that the input string is of the form 0∗1∗
Hint: This is a regular task --- no need to even write on the tape

– Phase 2: Check that #0’s=#1’s
Hint: You can overwrite characters on the tape by new symbols 

Fill out a poll everywhere for Activity Credit!
Go to pollev.com/thomas311 and login 
with your UW identity

_ _ 0 0 0 1 1 1 _Tape:

Start position

http://pollev.com/thomas311


Turing machines

Ideal Java/C programs:
– Just like the Java/C you’re used to programming 

with, except you never run out of memory
• Constructor methods always succeed
• malloc in C never fails

Equivalent to Turing machines except a lot easier to 
program:
– Turing machine definition is useful for breaking 

computation down into simplest steps
– We only care about high level so we use programs



Turing’s big idea part 1:  Machines as data

Original Turing machine definition:
– A different “machine” M for each task
– Each machine M is defined by a finite set of 

possible operations on finite set of symbols
– So... M has a finite description as a sequence of 

symbols, its “code”, which we denote <M>

You already are used to this idea with the notion of the 
program code or text but this was a new idea in Turing’s 
time.



Turing’s big idea part 2:  A Universal TM

• A Turing machine interpreter U
– On input <M> and its input x,                                                    

U outputs the same thing as M does on input x
– At each step it decodes which operation M would have 

performed and simulates it.
• One Turing machine is enough
– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input
x

output
M(x) U

x output
M(x)<M>



Computers from Thought
Computers as we know them grew out of a desire to avoid bugs in 
mathematical reasoning.

Hilbert in a famous speech at the International Congress of Mathematicians in 
1900 set out the goal to mechanize all of mathematics.

In the 1930s, work of Gödel and Turing showed that Hilbert’s program is 
impossible.

Gödel’s Incompleteness Theorem
Undecidability of the Halting Problem

Both of these employ an idea we will see called diagonalization.

The ideas are simple but so revolutionary that their inventor Georg Cantor
was shunned by the mathematical leaders of the time:

Poincaré referred to them as a “grave disease infecting mathematics.”
Kronecker fought to keep Cantor’s papers out of his journals.

Cantor spent the last 30 years of his life battling depression, living 
often in “sanatoriums” (psychiatric hospitals).



Cardinality

What does it mean that two sets have the same size?



Cardinality

What does it mean that two sets have the same size?



Injective and surjective

A function 𝒇 ∶ 𝑨 → 𝑩 is injective (= one-to-one) if every 
output corresponds to at most one input;                                                 
i.e. 𝒇 𝒙 = 𝒇 𝒙! ⇒ 𝒙 = 𝒙′ for all 𝒙, 𝒙! ∈ 𝑨.

A function 𝒇 ∶ 𝑨 → 𝑩 is surjective (=onto) if every output gets 
hit;  i.e. for every 𝒚 ∈ 𝑩, there exists 𝒙 ∈ 𝑨 such that 𝒇 𝒙 = 𝒚.
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Injective but 
not surjective

𝐴 𝑩



Cardinality

Definition: Two sets 𝐴 and 𝐵 have the same cardinality if there is 
a one-to-one correspondence between the elements of 𝐴 and 
those of 𝐵.
More precisely, if there is an  injective and surjective (=bijective) 
function 𝑓 ∶ 𝐴 → 𝐵.

𝐴 𝐵
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The definition also makes sense for infinite sets!



Cardinality

Do the natural numbers and the even natural numbers have 
the same cardinality?

Yes!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

0 2    4 6 8 10 12 14 16 18 20 22 24 26 28 ...

What’s the map 𝒇 ∶ ℕ → 𝟐ℕ ? 𝒇 𝒏 = 𝟐𝒏



Countable sets

Definition:  A set is countable iff it has the same cardinality as 
some subset of ℕ.

Equivalent:  A set 𝑺 is countable iff there is a surjective
function 𝒈 ∶ ℕ → 𝑺

Equivalent:  A set 𝑺 is countable iff we can order the elements
𝑺 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … }

Example: ℤ is countable



Claim:  Σ∗ is countable for every finite Σ

Idea: For 𝑘 = 0,1,2, … list all the Σ " many strings of length 𝑘.
Then each string in Σ∗ appears in that list. 

e.g. {0,1}* is countable:

{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ... }



Countable sets

A set 𝑺 is countable iff we can order the elements of 𝑺 as
𝑺 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … }

Countable sets:
ℕ - the natural numbers
ℤ - the integers
ℚ - the rationals
Σ∗- the strings over any finite Σ
The set of all Java programs
The set of all Turing machines

}Enumerate in 
increasing 
length

Uncountable sets: ???



Are the real numbers countable?

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof will be by contradiction.
Uses a new method called diagonalization.



Real numbers between 0 and 1:  [0,1)

Every number between 0 and 1 has an infinite decimal 
expansion:

1/2 =  0.50000000000000000000000...
1/3 =  0.33333333333333333333333...
1/7 =  0.14285714285714285714285...
𝜋-3 =  0.14159265358979323846264...
1/5 =  0.19999999999999999999999...

=  0.20000000000000000000000...

Representation is unique except for the cases that 
the decimal expansion ends in all 0’s or all 9’s.        
We will never use the all 9’s representation.



r1          0.50000000…

r2    0.33333333…

r3          0.14285714…

r4          0.14159265…

r5          0.12122122…

r6          0.25000000…

r7          0.71828182…

r8           0.61803394…
... ...

Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:



Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...



Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...



Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.

1

5

5

5

5

5

1

5



Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0 ... ...
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... .... ... .... .... ... ... ... ... ... ...

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.
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5

5

5

1

5

If diagonal element is 𝟎. 𝒙𝟏𝟏𝒙𝟐𝟐𝒙𝟑𝟑𝒙𝟒𝟒𝒙𝟓𝟓⋯ then let’s call the flipped 
number 𝟎. 2𝒙𝟏𝟏2𝒙𝟐𝟐2𝒙𝟑𝟑2𝒙𝟒𝟒2𝒙𝟓𝟓⋯

It cannot appear anywhere on the list!



Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.
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1

5

If diagonal element is 𝟎. 𝒙𝟏𝟏𝒙𝟐𝟐𝒙𝟑𝟑𝒙𝟒𝟒𝒙𝟓𝟓⋯ then let’s call the flipped 
number 𝟎. 2𝒙𝟏𝟏2𝒙𝟐𝟐2𝒙𝟑𝟑2𝒙𝟒𝟒2𝒙𝟓𝟓⋯

It cannot appear anywhere on the list!

For every 𝒏 ≥ 𝟏:
𝒓𝒏 ≠ 𝟎. 2𝒙𝟏𝟏2𝒙𝟐𝟐2𝒙𝟑𝟑2𝒙𝟒𝟒2𝒙𝟓𝟓⋯
because the numbers differ on
the 𝒏-th digit!



Proof that [0,1) is not countable
Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...
r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...
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Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.
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So the list is incomplete, which is a contradiction.
Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every 𝒏 ≥ 𝟏:
𝒓𝒏 ≠ 𝟎. 2𝒙𝟏𝟏2𝒙𝟐𝟐2𝒙𝟑𝟑2𝒙𝟒𝟒2𝒙𝟓𝟓⋯
because the numbers differ on
the 𝒏-th digit!



Last time:  Countable sets

Countable sets:
ℕ - the natural numbers
ℤ - the integers
ℚ - the rationals
Σ∗- the strings over any finite Σ
The set of all Java programs
The set of all Turing machines

}Enumerate in 
increasing 
length

Uncountable sets: 

ℝ - the natural numbers
P(ℕ) - power set of ℕ
Set of functions 𝑓:ℕ → {0,1}



Uncomputable functions

We have seen that:
– The set of all (Java) programs is countable
– The set of all functions 𝑓 ∶ ℕ → {0,1} is not countable

So:  There must be some function 𝑓 ∶ ℕ → {0,1} that is not
computable by any program!

Interesting… maybe.

Can we come up with an explicit function that is 
uncomputable? 



Some Notation

We’re going to be talking about Java code. 

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());
}

What is P(CODE(P))?

“!!!!""""##$%%&'(()))*+,,---.////0111112234444444444455566666677899::;<”



Undecidability of The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 
the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



Proof by contradiction

Suppose that H is a Java program that solves the 
Halting problem.

x



Proof by contradiction

Suppose that H is a Java program that solves the 
Halting problem.

Then we can write this program:
public static void D(String s) {

if (H(s,s) == true) {
...

} else {
...

}
}

public static bool H(String s, String x) { ... }

Does D(CODE(D)) halt?



public static void D(s) {
if (H(s,s) == true) {

...
}
else {

...
}

}

Does D(CODE(D)) halt?



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

...
}
else {

...
}

}

Does D(CODE(D)) halt?



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

...
}

}

Does D(CODE(D)) halt?



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */
}

}

Does D(CODE(D)) halt?



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */
}

}

Does D(CODE(D)) halt?

Contradiction!The ONLY assumption was that th
e program H

exists so that assumption must have been false.



Done

• We proved that there is no computer 
program that can solve the Halting Problem.
– There was nothing special about Java*        

[Church-Turing thesis]

• This tells us that there is no compiler that can check our 
programs and guarantee to find any infinite loops they 
might have.



Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */
}

}

D halts on input code(P)  iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)



Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

Write <P> for CODE(P)

This listing of all programs really does exist 
since the set of all Java programs is countable

The goal of this “diagonal” argument is not 
to show that the listing is incomplete but 
rather to show that a “flipped” diagonal 
element is not in the listing



Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0     1     1     0    1     1    1     0      0      0     1  ...
1     1     0     1    0     1    1     0      1      1     1  ...
1     0     1     0    0     0    0     0      0      0     1  ...
0     1     1     0    1     0    1     1      0      1     0  ...
0     1     1     1    1     1    1     0      0      0     1  ...
1     1     0     0    0     1    1     0      1      1     1  ...
1     0     1     1    0     0    0     0      0      0     1  ...
0     1     1     1    1     0    1     1      0      1     0  ...
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)



Connection to diagonalization
<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Al
l p

ro
gr

am
s P

0 1     1     0    1     1    1     0      0      0     1  ...
1     1 0     1    0     1    1     0      1      1     1  ...
1     0     1 0    0     0    0     0      0      0     1  ...
0     1     1     0 1     0    1     1      0      1     0  ...
0     1     1     1    1 1    1     0      0      0     1  ...
1     1     0     0    0     1 1     0      1      1     1  ...
1     0     1     1    0     0    0 0      0      0     1  ...
0     1     1     1    1     0    1     1 0      1     0  ...
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1
0

0
1

0
0

1
0

Write <P> for CODE(P)

Want behavior of program 𝑫 to be 
like the flipped diagonal, so it can’t 
be in the list of all programs.  

Al
l p

ro
gr

am
s P

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever



Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */
}

}

D halts on input code(P)  iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore for any program P,  D differs from P on input code(P)


